
• •

--------- - ------- - ---- - - ----------_.- Virtual Machine/System Product

System Product Interpreter User's Guide

Release 6

PS pas

SC24-5238-04

.¥ AA

Fifth Edition (July 1988)

This edition, SC24-5238-04, is a major revision of SC24-5238-03, and applies to Release 6 of the IBM Virtual
Machine/System Product (5664-167) unless otherwise indicated in new editions or Technical Newsletters.
Changes are periodically made to the information contained herein; before using this publication in
connection with the operation of IBM systems, consult the latest IBM System/370, 30xx, 4300, and 9370
Processors Bibliography, GC20-0001, for the editions that are applicable and current.

Summary of Changes

For a detailed list of changes, see "SWlllllary of Cllanges" on page 229.

Changes or additions to the text and illustrations are indicated by a vertical line to the left of the change.

In this manual are illustrations in which names are used. These names are fanciful and fictitious; they are
used solely for illustrative purposes and not for identification of any person or company.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM licensed program in
this publication is not intended to state or imply that only IBM's licensed program may be used. Any
functionally equivalent program may be used instead.

Ordering Publications

Requests for copies of IBM publications should be made to your IBM representative or to the IBM branch
office serving your locality. Publications are not stocked at the address given below.

A form for reader's comments is provided at the back of this publication; if the form has been removed,
comments may be addressed to IBM Corporation, Information Development, Department G60, P.O. Box 6,
Endicott, NY, U.S.A. 13760. IBM may use or distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1983, 1984, 1986, 1988. All rights reserved.

Preface

If you would like to be able to write programs, then this book is for you. You will
need a terminal with access to Virtual Machine/System Product (VM/SP), and you
should be reasonably familiar with VM/SP, but you need not have had any previous
experience of programming.

The programming language described by this book is called the Restructured
Extended Executor language (sometimes abbreviated REXX). The book also
describes how the System Product Interpreter (shortened, hereafter, to the
interpreter) processes or interprets the Restructured Extended Executor language.

This book is a step-by-step guide that will help you learn REXX in three levels.
You are advised to read through this book in three passes, focusing each time on
different material.

On your first reading, you will learn fundamental concepts, and be invited to
write a dozen or so small programs of your own.

On your second reading, you will get to know the main body of the language,
and be shown practical programs that you can copy or modify.

The third reading deals with more difficult tasks; about the more sophisticated
features of the language that you may need to use occasionally.

On each reading, you will find that your path through the book is clearly marked
with headings and reminders.

Chapter 1: Introduction - discusses how to use this publication and
introduces you to the Restructured Extended Executor (REXX) language.

Chapter 2: How Your Program Is Interpreted - describes the rules of syntax
and substitution in REXX programs.

Chapter 3: Variables - provides you with information on naming, using,
and assigning variables. It also shows you how to build a collection of
variables and create variables that are unique to your programs.

Chapter 4: Expressions - shows how to write expressions that the interpreter
can compute (operators, true or false, arithmetic, comparisons, etc ..).

Chapter 5: Conversations - shows how to write lines to a user's screen, and
. how to get data that has been entered on the command line and use it in
your program. The chapter also describes parsing of options, variables, and
other data.

Chapter 6: Commands - describes how to issue CMS and CP commands
from your program. You will learn how to pass information back and forth
between command environments and your program.

Chapter 7: File Processing - provides you with examples of REXX
programs that modify CMS files by reading and writing lines. The chapter
also describes how to use REXX to process a file to produce a new file.

Chapter 8: XEDIT - introduces ways in which you can tailor XEDIT
though the use of REXX programs.

Preface iii

Chapter 9: Control - describes how to determine the course that your
program will take. You can select one of a number of lists, repeat a list of
instructions, continue from a different point in the same file, pass control to
a subroutine and return, and exit from the program.

Chapter 10: Programming Style and Techniques - introduces the method you
should use to construct and design your REXX programs. The section
includes various problems and solutions.

For information about writing REXX programs in the GCS environment, see the
VM/SP System Product Interpreter Reference.

iv VM/SP System Product Interpreter User's Guide

Contents

Chapter 1. Introduction
What is REXX?

Features of REXX
REXX and the Systems Application Architecture™ (SAA)

How to Use This Book
Before You Start
The Reading Plan

Conversations
Translation to Uppercase
The PARSE PULL Instruction
Writing a Program
Running a Program
Did You Understand That?

Chapter 2. How Your Program Is Interpreted
Rules

Comments in Programs
Comments with Special Meaning to CMS
Strings
Clauses
When Does a Clause End?
Tidying Up
Syntax Errors
Did You Understand That?
Substitution Rules

Repeated Substitution
The VAL UE() Function
Compound Symbols
The INTERPRET Instruction

Chapter 3. Variables
Assignments

Choosing Names for Variables
Example: Setting Variables
Did You Understand That?

Compound Symbols
U sing Compound Symbols
Stems
Did You Understand That?

Avoiding Duplicate Names ..
How Much Should You Tell Your Subroutine?

The PROCEDURE Instruction
The PROCEDURE EXPOSE Instruction

The Existence of Variable Names
The SYMBOL() Function
The DROP Instruction

Arrays with More Than One Dimension

Chapter 4. Expressions
Operators

Operators and Terms

1
1
1
2
2
2
3
4
5
5
5
6
6

9
9
9

10
10
10
11
12
12
13
15
16
16
16
17

19
19
20
20
21
22
22
24
25
27
29
29
30
31
31
31
32

35
36
36

Contents V

Order of Evaluation
Parentheses
Did You Understand That?
Tracing
Data Types
Prefix Operators
Priority of Operators
Using Parentheses
Did You Understand That?

True and False
Comparisons
Using True and False
The Equal Sign (=)
The AND (&) Operator
The OR (I) Operator ..
Did You Understand That?
Logical Operators
Did You Understand That?

Functions
The Idea of a Function
Built-in Functions
User-Written Functions
Did You Understand That?
User-Written Functions
ARG Instruction
The ARG() Function .
RETURN Instruction
Did You Understand That?
A Square Root Function
Internal Functions
Functions Written in S/370 Assembler Language

Loops
The DO Instruction
A "DO UNTIL" Loop
Getting Out of Loops
Did You Understand That?

Arithmetic
Numbers
Checking Your Input
Addition, Subtraction, Multiplication
Division
Range of Numbers
Exponential Notation
Did You Understand That?
Formatting Numeric Output
Specifying Conventional (Fixed Point) Notation
Specifying Exponential (Floating Point) Notation
A Special Case
Did You Understand That?
Exponentiation
The NUMERIC DIGITS Instruction
The SIGN() Function ...
Rounding and Truncation .
Did You Understand That?

Groups of Instructions

vi VMjSP System Product Interpreter User's Guide

37
37
37
39
40
41
41
42
42
44
44
44
45
45
45
45
47
47
49
49
50
50
50
52
52
52
52
53
56
57
58
59
59
59
60
61
63
63
64
65
65
67
67
68
69
70
71
71
71
73
73
74
74
75
77

Text
Concatenation
The SUBSTR() Function
The LENGTH() Function
The COPIES() Function
The LEFT() Function
Arranging Your Output in Columns
Did You Understand That?
Using a Subroutine to Simplify Tabulation
The POSe) Function
Example
Words
The WORDPOS() Function
Providing Help

78
78
78
79
79
79
80
80
82
83
84
85
85
86
87
90
91
93
93
93
93
94
95
95
96
97
97
99

Did You Understand That?
The OVERLAY() Function
The WORDS() and WORD() Functions

Comparisons
General
Numbers .
Characters
Did You Understand That?
The COMPARE() Function
The ABBREV() Function
Did You Understand That? '"
Exact Comparisons
Fuzzy Arithmetical Comparisons

Translation
Hexadecimal
Conversion
Character Sets
The VERIFY() Function "

Chapter 5. Conversations
The SAY Instruction
The PULL Instruction

The UPPER Instruction
Did You Understand That?
Parsing Words
The Period as a Placeholder
Did You Understand That?

Getting Data from the Command Line
Mixed Case
Recognizing Options
Li teral Pa ttems
Parsing Variables and Expressions ..
Did You Understand That?
Parsing Using Patterns

Chapter 6. Commands
Issuing Commands to CMS and CP

Clauses That Become Commands
When to Use Quotes
CP Commands
Summary

100
100
103
103

105
105
106
106
107
109
110
110
112
113
113
113
114
115
117

119
119
119
121
122
122

Contents vii

Return Codes
Special Variables
Did You Understand That?
Debugging Individual Commands
Debugging Execs That Contain Commands
Making a Common Routine for Handling Return Codes
Getting Messages from a Repository File
How to Suppress Messages Issued by CMS Commands
A Useful Subroutine
Did You Understand That?

Using the Program Stack
Definitions
Buffers
How to Use the Program Stack
Example: A CMS Command That Puts Data onto the Program Stack
Example: A CMS Command That Requires Data from the Program Stack

CP Commands
How to Suppress Messages Issued by CP Commands
How to Obtain the Reply from a CP Command

The COMMAND Environment

Chapter 7. File Processing
Writing Files

Example: An Editor
Reading Files

End of File
Example: To Display a File on the Screen
The FINIS Command
Example: A Time Recording Program
Did You Understand That?

Using Data From an Existing File to Create a New File
Example: Processing a File to Produce a New File
Precautions To Be Taken When Modifying an Existing File

Other Techniques
An Example: Sorting a File
Processing Files in the CMS Shared File System

Chapter 8. XEDIT
XEDIT Subcommands and Macros

XEDIT Macros
Naming of XEDIT Macros .. .
Example: Changing the Settings of the Scroll Keys
Return Codes
Messages

The EXTRACT Subcommand
The Current Line
An Example: Moving through a File a Paragraph at a Time

Your XEDIT Profile
Menus Using XEDIT

Chapter 9 .. Control
Selection

The IF Instruction
The ELSE Keyword
The "Dangling" ELSE

viii VMjSP System Product Interpreter User's Guide

123
124
125
126
126
126
127
128
129
130
131
132
133
134
136
137
138
138
138
141

143
143
144
145
145
146
146
147
149
152
152
154
156
156
159

161
161
162
162
162
163
164
165
165
166
166
168

171
172
173
174
176

Did You Understand That? 177
The SELECT Instruction 178
Example 180
The NOP Instruction 181
Did You Understand That? 181

Loops 184
Simple Repetitive Loops . 184
Using a Control Variable 186
The BY Expression 187
Did You Understand That? 187
Conditional Loops: The LEAVE Instruction 190
Conditional Loops: The DO WHILE Instruction 191
Conditional Loops: The DO UNTIL Instruction 192
Conditional Loops: The Choice 193
Did You Understand That? 194
Compound DO Instructions 196
Leaving a Specified Loop 196
The ITERATE Instruction 198

The EXIT Instruction ... 200
Subroutines 201

The Idea of a Subroutine 201
The CALL Instruction . 203
The ARG Instruction 205
The RETURN Instruction 205
Example 205
When to Leave Out the Arguments 206
Did You Understand That? .. 207
Subroutines and Functions 209
Using a Call of the Other Kind 210
Parsing the Arguments 210
External Subroutines ... 211

Jumps 212
The SIGNAL Instruction 212
The SIGNAL Instruction 213
SIGNAL ON Condition . 214

Chapter 10. Programming Style and Techniques 215
Consider the Data 215

Did You Understand That? 217
Happy Hour 217
Designing a Program 220

Methods for Designing Loops 220
The Conclusion 220
What Do We Have So Far? . 221
Stepwise Refinement: An Example 222
Consider the Data 222

Correcting Your Program 223
Modifying Your Program 223
Tracing Your Program 223

CoilingS~k 224

Summary of Changes 229

Glossary of Terms and Abbreviations 231

Contents ix

Bibliography
Related Publications

Index

x VMjSP System Product Interpreter User's Guide

237
237

241

Introduction

Chapter 1. Introduction

What is REXX?

In this chapter we discuss:

• What is REXX?

• Features of REXX.

• REXX and the Systems Application Architecture.

• How to use this book.

• Conversations in REXX.

The REstructured eXecutor eXtended language, or REXX, is a programming
language that is extremely versatile. Features such as ease of use and free format
make it a good language for beginners and general users. REXX is also suited for
more serious computer professionals because of its ability to issue commands to
different environments, its powerful functions, and its extensive mathematical
capabilities.

REXX is an adaptation of CMS' (Conversational Monitor System) EXEC 2
language; however, REXX instructions are quite different and easier to use. If you
are a newcomer to programming, you will find that it is fairly easy to learn and
write programs in REXX.

On the other hand, if you are an experienced programmer, you will find that REXX
somewhat resembles PL/l. There are a number of differences, but the main
difference is that a REXX program is interpreted (the interpreter operates on the
program directly as it executes). In PL/l, the program is compiled (translated into
machine language) first, then executed.

Features of REXX
Ease of use: The REXX language is easy to read and write because many
instructions are meaningful English words. Unlike some lower level
programming languages that use abbreviations, REXX instructions are common
words, such as SAY, PULL, IF ... THEN ... ELSE, DO ... END, and EXIT.

Free format: There are few rules about REXX format. You need not start an
instruction in a particular column, you can also skip spaces in a line or skip
entire lines, you can have an instruction span many lines or have multiple
instructions on one line, variables do not need to be pre-defined, and you can
type instructions in upper, lower, or mixed case.

Convenient built-in functions: REXX supplies built-in functions that perform
various processing, searching, and comparison operations for both text and
numbers. Other built-in functions provide formatting capabilities and arithmetic
calculations.

Chapter 1. Introduction 1

Introduction

Easy to debug: When a REXX exec contains an error, messages with
meaningful explanations are displayed on the screen. In addition, the TRACE
instruction provides a powerful debugging tool.

Interpreted: The REXX language is an interpreted language. When a REXX
exec runs, the language processor directly interprets each language statement.
Languages that are not interpreted must be compiled into machine language
before they are run.

Extensive parsing capabilities: REXX includes extensive parsing capabilities for
character manipulation. This parsing capability allows you to set up a pattern
to separate characters, numbers, and mixed input.

REXX and the Systems Application Architecture™ (SAA)
REXX is one of the programming languages supported by the Systems Application
Architecture (SAA) to help provide cross-system consistency. Programs written in
REXX according to the SAA specifications can be transported to other SAA
environments. For example, a REXX exec in CMS can also run in a TSOjE
environment, if the exec does not use system-specific functions or commands.

How to Use This Book

Before You Start

If you are searching for particular topics, look in the Preface, the Table of Contents,
or the Index at the back of the book. If you are going to use this book as a
self-study text, read on.

Before reading this book it is important for you to consider the following items:

• We expect you to know something about CMS. For instance, you should know
what a CMS file is, how to create a file using an editor, and some of the ways
that you can use CMS commands to manipulate files. You should also know
about the additional file management and file sharing functions available
through the CMS Shared File System (SFS). If you are not familiar with CMS
or SFS, read the VMjSP CMS Primer first.

• A complete description of REXX can be found in the VMjSP System Product
Interpreter Reference. You will need to have your own copy of this on hand, so
you can look up any instruction or function that is not completely defined in
this book.

• If you have little or no experience in computer programming or programming in
REXX, it may be worthwhile for you to read VMjIS Writing Simple Programs
with REXX. This book is an excellent introduction to REXX and can help you
get started in programming, regardless of the system you are working with.

• Another related publication that may be useful to more experienced REXX users
is the SAA Common Programming Interface Procedures Language Reference.
This book defines the SAA Procedures Language, which is a subset of the
VMjSP System Product Interpreter, and REXX. Descriptions include use and
syntax of the language as well as explanations on how the language processor
interprets a program as it is executing.

* Systems Application Architecture is a trademark of the IBM Corporation.

2 VM/SP System Product Interpreter User's Guide

The Reading Plan

Introduction

• You may occasionally need to refer to the other IBM manuals that are
mentioned at the end of the book (see "Related Publications" on page 237).

• Quite early on, we shall invite you to try entering small programs from your
terminal. If you do not already have a VM user 1D and logon password, you
should arrange to get them as soon as possible.

• If you are using REXX in the GCS environment, see the VMjSP System Product
Interpreter Reference. Included is a description of the differences between
writing REXX programs for the GCS environment and writing REXX programs
for the CMS environment.

To assist beginners and less-experienced programmers, each subject is dealt with at
three levels: Reading 1, Reading 2, and Reading 3.

Reading 1

Reading 2

Reading 3

The first reading introduces you to all the basic concepts of the
System Product Interpreter. You will learn these concepts by
writing programs suggested in the text. We expect you will also
write some programs for your own use.

The second reading expands your knowledge of the first
reading's information and teaches you the main body of the
REXX language. You will also write, copy, and modify more
programs.

The third reading contains information on features that are not
often used or that are specific for special kinds of programs.

To guide you through these readings, there are heading (like the one following) at
the top of each page that tell you what reading level you are on.

Reading 1

In addition, there are bold type reminders at the beginning and end of each reading.
These reminders will tell you where a particular reading begins and ends and where
you should go next. Following is an example.

Reading 1

The three-level reading scheme should help maintain your interest while you build up
your knowledge and skill.

Reading Steps: Reading 1 and Reading 2 are divided into steps to help you
measure your progress. They also give you places to stop and take breaks. The
steps are another way to pace yourself through the self-study. Reading 1 consists of
steps 1 through 23 and Reading 2 consists of steps 24 through 37.

Chapter 1. Introduction 3

Reading 1

Conversations
Reading 1 begins here. It is also the beginning of step 1.

One way that a computer can communicate with a user is to ask questions and then
compute results based on the answers typed in. In other words, the user has a
conversation with the computer. You can easily write a list of REXX instructions
that will conduct a conversation. We call such a list of instructions a program.

Figure I shows a sample REXX program. The sample program asks the user to
give his name, and then responds to him by name. For instance, if the user types in
the name Joe, the reply He 110 JOE is displayed. Or else, if the user does not type
anything in, the reply Hello stranger is displayed.

First, we shall discuss how it works; then you can try it out for yourself.

/* A conversation */
say "Hello! What's your name?"
pull who
if who = 1111 then say II Hell 0 stranger"
el se say II Hell 0" who

Figure 1. HELLO EXEC

Briefly, the various pieces of the sample program are:

/* ... */

say

pull

who

if

who = 1111

then

say

A comment explaining what the program is about. All REXX
programs must start with a comment. This distinguishes them from
CMS EXEC and EXEC 2 language programs. Apart from this,
comments are ignored.

An instruction to display He 11o! What' s your name? on the screen.

An instruction to read the response entered from the keyboard and
put it into the computer's memory.

The name given to the place in memory where the user's response is
put.

An instruction that asks a question.

A test to determine if WHO is empty.

A direction to execute the instruction that follows, if the tested
condition is true.

An instruction to display Hello stranger on the screen.

4 VMjSP System Product Interpreter User's Guide

else

say

Translation to Uppercase

Reading 1

An alternative direction to execute the instruction that follows, if the
tested condition is not true.

An instruction to display Hell 0, followed by whatever is in WHO on
the screen.

You may have noticed in this example that the letters:

a, b, c, ... z

sometimes get changed to:

A, B, C, ... Z

This is called translating to uppercase. Anything in your program that is not in
quotes gets translated to uppercase (for example, the names of places in the
computer's memory).

Anything in quotes is not translated to uppercase; it is left as is.

The PARSE PULL Instruction
There are two forms of the PARSE PULL instruction

PARSE PULL Reads everything from the keyboard as is, without translating it
to uppercase.

PARSE UPPER PULL
Translates everything to uppercase as it is read from the
keyboard. This form of the instruction may be abbreviated to
PULL.

In Figure 1, PULL is used. This is the same as PARSE UPPER PULL. You will
see when you run the example that whatever you type in is translated to uppercase.

Writing a Program
You can write a program in any accessed SFS directory for which you have write
authority or on any minidisk accessed read/write.

To write this program, use the same editor as you use for other work; any editor will
do. In this book, we shall assume that you use XEDIT, the VM/SP System Product
Editor.

The name of the program is HELLO EXEC (for now, assume that the filetype must
be exec). Log on to VM/SP and type the command:

xedit hello exec

Type in the program, exactly as it is shown in Figure 1, beginning with /* A
conversat ion * j. Then file it using the XEDIT command:

====> file

The system will reply with the ready message:

Ready;

Now your program is ready to run.

Chapter 1. Introduction 5

Reading 1

Running a Program
If you want to run a program that has a filetype of exec, you just type in its
filename. In this case, type he 110 on the command line and press ENTER. Try it!

This is what happened when Fred tried it.

hello
Hello! What's your name?
fred
Hell 0 FRED
Ready;

The PULL instruction paused, waiting for a reply. Fred typed fred on the
command line and, when he pressed the ENTER key, the PULL instruction put the
word FRED into the place in the computer's memory called WHO. The IF instruction
asked, is WHO equal to nothing:

WHO = 1111

meaning, is the value of WHO (in this case, FRED) equal to nothing:

IIFREDII = 1111

This was not true; so, the instruction after then was not executed; but the instruction
after else, was.

And this is what happened when Mike tried it:

hello
Hello! What's your name?

Hell 0 stranger
Ready;

Mike did not understand that he had to type in his name. Perhaps the program
should have made it clearer to him. Anyhow, he just pressed ENTER. The PULL
instruction put 1111 (nothing) into the place in the computer's memory called WHO.
The IF instruction asked, is:

WHO = 1111

meaning, is the value of WHO equal to nothing:
1111 = 1111

In this case, it was true. So, the instruction after then was executed; but the
instruction after else was not.

Did You Understand That?
1. Did you get your version of HELLO EXEC to run on your VMjSP system? If

not, check that you have correctly typed it in. If it still does not work and you
can not understand the error messages, ask for help. Usually, experienced users
are happy to help a beginner. At some installations the System Support people
will give help over the telephone.

Do not worry if you did not fully understand how you could use the SAY,
PULL, and IF instructions. This will be explained again later.

6 VMjSP System Product Interpreter User's Guide

Reading 1

You have just completed Step 1.

Reading 1 continues in Chapter 2, "How Your Program Is Interpreted" on page 9.

Chapter 1. Introduction 7

Reading 1

8 VM/SP System Product Interpreter User's Guide

Reading 1

Chapter 2. How Your Program Is Interpreted

Reading 1

In this chapter:

immediately following, describes:

• Comments

• Strings (in quotes)

• Clauses

• Blanks

• Lowercase characters (a .. z).

Reading 2 on page 15, describes:

• Substitution rules.

Reading 3 on page 16, describes:

Rules

• Repeated substitution using the

The VAL VE() function
Compound Symbols
The INTERPRET instruction.

Reading 1

The System Product Interpreter works on your REXX program, line by line and
word by word, doing what you have written. If you know the rules for interpreting
a REXX program, it will make it easier for you to write programs that will correctly
execute. The rules are quite simple if you learn them in the right order.

The first few rules are explained in this chapter. We start with the rule for
comments.

Comments in Programs
When you write a program, remember that you will almost certainly want to read it
over later (before improving it, for example). Other readers of your program also
need to know what the program is for, what kind of input it can handle, what kind
of output it produces, and so on. You may also want to write remarks about
individual instructions themselves. All these things, words that are to be read by
humans but are not to be interpreted, are called comments.

To indicate which things are comments, use:

/* to mark the start of a" comment
*/ to mark the end of a comment.

Chapter 2. How Your Program Is Interpreted 9

Reading 1

The /* causes the interpreter to stop interpreting; interpreting starts again only after
a * / is found, which may be a few words or several lines later. For example,

/* This is a comment. */

say •.. /* This is on the same line as the instruction */

/* Comments may
occupy more
than one line. */

Comments with Special Meaning to CMS

Strings

Clauses

The first line of a REXX program must start with a comment. Why?

Historically, there are three languages that can be used for writing execs for VM/SP.
The oldest is called CMS EXEC; the next is EXEC 2; and the latest is REXX. For
technical reasons, they all have a filetype of EXEC. Because each type of exec
requires its own special processing, CMS must be able to distinguish one type from
another. It does this by looking at the first line of the exec file. So, to tell CMS
that your program is written in REXX, the first line of the file must start with a
comment.

/* This is a REXX program. */
Although /* * / is sufficient, a better use for this space is to provide a brief
description of your program.

When the interpreter sees a quote (either II or ') it stops interpreting and just goes
along looking for the matching quote. The string of characters inside the quotes is
used just as it is. Examples of strings are:

'Hello'
IIFinal result: II

If you want to use a quotation mark within a string you should use quotation marks
of the other kind to delimit the whole string.

IIDon't panic ll

'He said, II Bother ll
,

There is another way. Within a string, a pair of quotes (of the same kind as was
used to delimit the string) is interpreted as one of that kind.

, Don' 't panic'
IIHe said, II II Bother II II II

(same as IIDon' t panic ll
)

(same as 'He said, IIBother"')

Your REXX program consists of a number of clauses. A clause can be:

1. An instruction that tells the interpreter to do something; for example,

say lithe word"

In this case, the interpreter will display the word on the user's screen.

2. An assignment; for example,

Message = 'Take care!'

10 VM/SP System Product Interpreter User's Guide

This means that the string Take care! is to be put into a place
called MESSAGE in the computer's memory.

Reading 1

Because MESSAGE can be given different values in different parts of the program,
it is called a variable (discussed in Chapter 3, "Variables" on page 19).

3. A label, which is a name followed by a colon; for example,

MYSUB:

(Labels are discussed in "The CALL Instruction" on page 203 and "The
SIGNAL Instruction" on page 212).

4. A null clause, such as a completely blank line, or

Anything that is not one of these (an instruction, an assignment, a label, or a
null clause) is taken to be:

5. A command; for example,

erase hello exec

Commands are passed to CMS (or other environments; discussed in "Issuing
Commands to CMS and CP" on page 119).

When Does a Clause End?
It is sometimes useful to be able to write more than one clause on a line, or to
extend a clause over many lines. The rules are:

• Usually, each clause occupies one line.

• If you want to put more than one clause on a line you must use a semicolon (;)
to separate the clauses.

• If you want a clause to span more than one line you must put a comma (,) at
the end of the line to indicate that the clause continues on the next line. The
comma can not, however, be used in the middle of a string or it will be
interpreted as part of the string itself. The same situation holds true for
comments.

What will you see on the screen when this exec is run?

/* Example: there are six clauses in this program */
say II Everybody cheer! II

say 11211; say 114 11 ; say 116 11 ; say 118 11 ;

say IIWho do well,
lIappreciate?1I

Figure 2. RAH EXEC

(If you are not sure, use XEDIT to create a file called RAH EXEC and tryout the
program.)

Chapter 2. How Your Program Is Interpreted 11

Reading 1

Tidying Up

Syntax Errors

When a line is being interpreted, everything that is not in quotes is translated to
uppercase. In other words the letters

a, b, c, ... z

get changed to

A,B,C, ... Z

The interpreter also ignores some of the blanks that you may have written into your
program, keeping only one blank between words. If this is not what you want, you
should use quotes. Figure 3 shows an example.

/* Example: cases and spaces * /
say a long story

say "A long story II

say about" "a dog

Figure 3. SHAGGY EXEC

Enter shaggy on the command line and press ENTER to call this EXEC. Here is
what appears on your screen:

shaggy
A LONG STORY
Along story
ABOUT A DOG
Ready;

The rules governing the arrangement of words and punctuation marks in a language
are called the syntax of the language. The rules we have been discussing are part of
the syntax for interpreting REXX.

If the interpreter finds something that does not make sense, it stops running your
program and displays the bad line, followed by an error message saying what is
wrong. Suppose we alter our first program to read:

/* A conversation */
say "Hello! What's your name?"
pull who /* Get the answer!
if who = 1111 then say "Hello stranger"
else say "Hello" who

12 VM/SP System Product Interpreter User's Guide

Reading 1

There is an error message here. We have forgotten to put a * / at the end of the
second comment. When we run the program, what appears on the screen is:

hello
Hello! What's your name?

3 +++ pull who /* Get the answer!if who = 1111 then say "Hello
stranger"el se say II Hell 0" who
Error 6 running HELLO EXEC, line 3: Unmatched "/*" or quote
Ready(20006);

• 3 +++ means the interpreter was interpreting the clause that started on line 3.
(The clause itself is displayed following the +++.)

• Error 6 gives the REXX error number.

The error message gives you a good idea what went wrong. If you need more
help, look up Error 6 in the list of error messages at the back of your VM/SP
System Product Interpreter Reference.

• Ready (20006) ; is the return code that the interpreter returns to CMS.

Leaving out a final quotation mark at the end of a string would cause the interpreter
to issue a similar REXX error message.

Did You Understand That?
1. Read the following program carefully. Take a pencil and write down what each

word is and what the interpreter will do with it.

MADAM EXEC

/* Polite enquiry */
Jane = IIMrs. Doell
say IIHow li is jane?

Now use XEDIT to create a file called MADAM EXEC and try out the
program. Did everything happen as you expected? If not, read this chapter
again and then study the following explanation.

2. This next program has an error in it! Type the program in and run it. Notice
what the return code is.

TROUBLE EXEC

/* Example: a syntax error */
say Unfortunately, there is an error here

Use the error number to look up the cause of the error in your VM/SP System
Product Interpreter Reference. Correct the error and test the program again.

Chapter 2. How Your Program Is Interpreted 13

Reading 1

Answers:

1. The syntax of this program is:

• /* Pol; te enqu; ry * / is a comment describing the program. (The first line
of a REXX program must start with a comment.)

• Jane = "Mrs. Doe" is an assignment. The variable JANE gets the value 'Mrs.
Doe'.

• say is a REXX instruction. The rest of the line is interpreted and the result
is displayed.

"How" is a string. It is displayed just as it is: How

; s is changed to uppercase. Because it is not the name of a variable, it
appears as: IS

JANE is the name of a variable. The value 'Mrs. Doe' is substituted.

? is a valid character .. Because it is not the name of a variable, it is
displayed as: ?

What actually appears on the screen is:

madam
How IS Mrs. Doe?

2. The error number is 37. To get advice on how to correct the error, use your
VMjSP System Product Interpreter Reference.

Note: You can also use the HELP command to obtain this advice. Use XEDIT
to add to your PROFILE EXEC A the line:

CP SET EMSG ON

File your PROFILE EXEC A and execute the command PROFILE. Now when
you get a syntax error, it will be prefixed by a IO-character error code:

DMSREX473E

Use the first three and the last four characters or the entire lO-characters of the
error code to obtain the HELP panel. In this example you would use the
command:

HELP Dr·1S473E or HELP DI·1Sf1EX473E

You have just completed Step 2.

Reading 1 continues in Chapter 3, "Variables" on page 19.

14 VM/SP System Product Interpreter User's Guide

Reading 2

Reading 2 begins here. It is also the beginning of step 24.

If you would like to review Reading 1 of this section, read "Conversations" on
page 4 and Chapter 2, "How Your Program Is Interpreted" on page 9.

If you wish to start Reading 2, continue on.

Substitution Rules
When replacing the names of variables with their values, the interpreter does not
look at the words it substitutes to see if they are also the names of variables.

For example:

food = meat
meat = steak
steak = sirloin
say "Buy us some" food /* says 'Buy us some MEAT I */
This rule applies to simple symbols. Compound symbols, discussed next
("Compound Symbols" on page 22), can be used to provide a further level of
substitution.

Reading 2 continues in Chapter 3, "Variables" on page 19.

Chapter 2. How Your Program Is Interpreted 15

Reading 3

Repeated Substitution
Reading 3 begin here.

For repeated substitution, you can use

• The VAL UE() function
• Compound symbols
• The INTERPRET instruction.

The VALUE() Function
To specify a computed value as the name of a variable, use the VALUE() function.
The example on page 15 could be redesigned like this:

/* Example: the name of the name of ..• */
food = meat
meat = steak
steak = "sirloin"
say "Buy us some" val ue (food) II,

"; I mean some" value(value(food»"."

/* says 'Buy us some STEAK; I mean some sirloin. ' */

Figure 4. ERRAND EXEC

Compound Symbols
Many programmers who use REXX are familiar with compound symbols, but only a
few have ever used the VALUE() function. Therefore, when you find a program
that can be coded using either method, choose compound symbols.

/* Part of a ventilation monitor. The user can query */
/* settings of certain ventilators. */

vent.front.door = open; vent.back.door = shut
vent.front.window = open; vent.back.window = open

do until noun ~= ""
say "Enter command"
pull verb adjective noun

end

if abbrev("QUERY",verb,l) then

/* user enters */
/* Iquery front door ' */

say adjective noun "is" vent.adjective.noun

/* says 'FRONT DOOR is OPEN ' */

Figure 5. VENTS EXEC

16 VM/SP System Product Interpreter User's Guide

The same example could have been coded:

frontdoor = open; •..

say adjective noun "is" value(adjective! !noun)

This is less familiar, though still readable.

The INTERPRET Instruction

Reading 3

To use a computed value as though it were a line in an exec file, use the
INTERPRET instruction.

INTERPRET expression

The specified expression is evaluated and the result is interpreted. (For a complete
description, see your VMjSP System Product Interpreter Reference.)

Here is an example:

/* Simple calculator */
say "Please enter an expression to be evaluated. 1I

say IIEnter a null 1 ine to end: II

do forever

end

parse pull expr
if expr=1 I then leave
interpret "Say" expr

Figure 6. MATH EXEC

To avoid confusing anyone reading your programs, it is better not to use
INTERPRET in situations where a simple VALUE() or a CALL would do instead.

Reading 3 continues in Chapter 3, "Variables" on page 19.

Chapter 2. How Your Program Is Interpreted 17

Reading 3

18 VM/SP System Product Interpreter User's Guide

Reading 1

Chapter 3. Variables

In this chapter:

Reading 1 immediately following, describes:

• What a variable is and how to assign values to them.

Reading 2 on page 22, describes:

• How to use compound symbols to build arrays

• How to avoid duplicate names.

Reading 3 on page 29, describes:

Assignments

• How to limit the scope of variable names with the PROCEDURE
instruction

• How to find out whether a particular symbol is the name of a variable

• How to DROP a variable

• How to build arrays with more than one dimension.

Reading 1

A basic requirement of programs is that they handle variety - variations in input
data and variations in their own results from processing. They do this by using
variables. A variable is one or more characters that represent a value. This value
can change during the execution of a program, but the variable name must stay the
same.

In an assignment, you name a variable and give it a value. An assignment can be
used to assign an initial value to a variable or to change its value.

• To give the variable called SOMETHING whatever value the user will type on
the command line, use the PULL instruction.

pull something

• To give the variable called TOTAL the value '0', use the assignment:

total = ()

• To give the variable called TOTAL a new value, namely the old value of
TOTAL plus the value of SOMETHING, use the assignment:

total = total + something

More generally, a REXX clause of the form

symbol = expression

Chapter 3. Variables 19

Reading 1

is called an assignment. The interpreter evaluates (computes) what the express i on is
and puts the result into the variable called symbol. We say

"Assign the expression's value to the symbol".

Choosing Names for Variables
You can choose any symbol as the name of a variable, with these restrictions:

1. The first character must be one of:

A-Z a-z @ # $ ¢ ! ? _

Note: The interpreter translates lowercase characters to uppercase before using
them.

2. The rest of the characters may be any of the following:

A-Z a-z @ # $ ¢ ! ? _ . or 0-9

But you should not use a period unless you understand the rules for "Compound
Symbols" on page 22, described in Reading 2 of this chapter.

Example: Setting Variables
To make your program easy to understand, use ordinary English words for the
names of variables, as in this program:

/* Example: farmyard noises explained */
say "What animal?"
pull beast /* user enters name of animal */
select

end

when beast = "LAMB"
when beast = "DONKEY"
when beast = "PIG"
otherwise

then
then
then

say 'The ' beast Isaysl noise

Figure 7. MCDONALD EXEC

noise = "Baahl Baahl Baahl"
noise = "Eeyore! II

noise = "Grunt! Grunt!"
noise = "I don't exist"

Use XEDIT to create this file called MCDONALD EXEC and try it out. Did it
work? If not, study the error messages and make sure you copied everything
correctly.

In the MCDONALD EXEC BEAST and NOISE were the names of variables.

say

pull

select

displays a string on the screen.

causes the program to pause. The user may now type something in.
When the user presses the ENTER key, whatever the user typed in is put
into the variable BEAST and the program continues.

chooses one of four assignment instructions, according to the value of the
variable BEAST. The chosen instruction sets the variable NOISE.

noise =

20 VM/SP System Product Interpreter User's Guide

Reading 1

(We shall discuss how to use select, when, then and otherwi se later,
in "The SELECT Instruction" on page 178.)

end indicates that this is the end of the select. (To make the program easier
to read, the instructions between the sel ect and the end are indented
three spaces to the right.)

say uses the symbols BEAST and NOISE to obtain the values of these variables
and to display them on the screen.

When the interpreter finds a symbol (a word that is not in quotes) it looks to see if
the symbol is the name of a variable; that is, whether it has been given a value. If
so, the interpreter substitutes that value for the symbol. If not, it translates the
symbol to uppercase and uses that.

The idea of a variable (such as NOISE in Figure 7) is very important in computing.
However, before we can make much more use of it we shall have to find out how
"expressions" are handled. This is the topic of the next chapter.

Did You Understand That?
1. Which of the following could be used as the name of a REXX variable?

a. DOG
b. K9
c.9T
d. nine_to_five
e. #7

Answers:

1.

a. OK
b. OK
c. Invalid, because the first character is a numeric digit.
d. OK, same as NINE_TO_FIVE
e. OK

You have just completed Step 3.

Reading 1 continues in Chapter 4, "Expressions" on page 35.

Chapter 3. Variables 21

Reading 2

Compound Symbols
Reading 2

Compound symbols can be used for building collections of variables.

For example:

gift.l = "A partridge in a pear tree"
gift.2 = "Two turtle doves"
gift.3 = "Three French hens"
gift.4 = "Four calling birds"

/* so that, if we know what day it is, we know what */
/* gift will be given. Suppose, for example that */

day = 3

/* then */

say gi ft. day /* says 'Three French hens' */

The symbol GIFT.DAY is recognized as compound because it contains a period. The
characters following the period may be the name of a variable. If the variable exists,
its value is substituted in the name to give a derived name. The derived name is
then used as the name of the variable to be processed. In the example, because DAY
equals 3 the derived name of GIFT.DAY is GIFT.3.

If DAY had never been given a value, its value would have been 'DAY', and the
derived name of GIFT.DAY would have been GIFT.DAY.

Using Compound Symbols
The example in Figure 8 shows how compound symbols can collect and process
data. In the first part of the program, the first player's score is entered into SCOR~.l,
the second player's into SCORE.2, and so on. A collection of consecutively numbered
variables like this is sometimes called an array. Thus, using compound symbols, the
array of SCOREs is processed to give the result in the required form.

22 VM/SP System Product Interpreter User's Guide

/* This is a scoreboard for a game. Any number of */
/* players can play. The rules for scoring are these: */
/* */
/* Each player has one turn and can score any number of */
/* points; fractions of a point are not allowed. The */
/* scores are entered into the computer and the program */
/* replies with */
/* */
/* the average score (to the nearest hundredth of */
/* a paint) */
/* the highest score */
/* the winner (or, in the case of a tie, */
/* the winners) */

/*--*/
/* Obtain scores from players */
/*--*/
say "Enter the score for each player in turn. When all"
say "have been entered, enter a blank line!"
say
n=l
do forever

say "Please enter the score for player "n
pull score.n
select

when datatype(score.n,whole) then n=n+l
when score.n="" then leave
otherwise say "The score must be a whole number. 1I

end
end

n = n - 1 /* now n = number of players */
if n = 0 then exit
/*--*/
/* compute average score */
/*--*/
total = 0
do player = 1 to n

total = total + score.player
end

/* continued ... */

Figure 8 (Part 1 of 2). GAME EXEC

Reading 2

Chapter 3. Variables 23

Reading 2

Stems

say "Average score is",
format(total/n,,2,0) /*

/*
/*
/*
/*

format "total/n" with */
no leading blanks, */
round to 2 decimal places,*/
do not use exponential */

notation */

/*--*/
/* compute highest score */
/*--*/
highest = 0
do player = 1 to n

highest = max(highest,score.player)
end
say "Highest score is" highest

/*--*/
/* Now compute: */
/* * W, the total number of players that have a score */
/* equal to HIGHEST */
/* * WINNER.I, WINNER.2 .•. WINNER.W, the id-numbers */
/* of these players */
/*--*/
w = 0 /* number of winners */
do player = 1 to n

end

if score.player = highest then do
w = w + 1
winner.w = player

end

/*--*/
/* announce winners */
/*--*/
if w = 1

then say liThe winner is Player #"winner.I
else do

say "There is a draw for top place. The winners are"
do p = 1 to w

end
say

say
end

Player #"winner.p

Figure 8 (Part 2 of 2). GAME EXEC

To refer to all the variables in an array, use their stem. A stem is a symbol that
contains only one period, which is its ending character.

F or example:

player. = 0
say player.I player.2 player.golf /* Says '0 0 o' */

It is often convenient to set all variables in an array to zero in this way.

24 VM/SP System Product Interpreter User's Guide

Reading 2

Did You Understand That?
1. Write a program to say the days of the week repeatedly, as:

Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday
Monday

You can use the eMS command, HI or HX, to stop it.

2. Extend this program to say the days of the month, as:

Sunday 1st January
Monday 2nd January

Answers:

1. The simplest solution is:

DAYSl EXEC

/* to say the days of the week indefinitely */
do forever

end

say "Sunday"
say "Monday"
say "Tuesday"
say "Wednesday"
say "Thursday"
say "Friday"
say "Saturday"

Note: To stop this exec, type HX. This is the immediate command to halt
execution.

Chapter 3. Variables 25

Reading 2

But, in view of the next question, consider a solution that uses compound
variables, like this:

DAYS2 EXEC

/* to say the days of the week indefinitely */
day.1 = "Sunday"
day.2 = "Monday"
day.3 = "Tuesday"
day.4 = "Wednesday"
day.5 = "Thursday"
day.6 = "Friday"
day.7 = "Saturday"

do j = 1
say day.j
if j = 7 then j = 0

end

2. This idea can be extended, like this:

MONTH1 EXEC

/* to say the days of the month for January */
day.1 = "Sunday"
day.2 = "Monday"
day.3 = "Tuesday"
day.4 = "Wednesday"
day.5 = "Thursday"
day.6 = "Friday"
day.7 = "Saturday"

do dayofmonth = 1 to 31
dayofweek = (dayofmonth+6)//7 + 1

select

end

when dayofmonth = 1 then th = "st"
when dayofmonth = 2 then th = lind"
when dayofmonth = 3 then th = "rd"
when dayofmonth = 21 then th = "st"
when dayofmonth = 22 then th = "nd"
when dayofmonth = 23 then th = "rd"
when dayofmonth = 31 then th = "st"
otherwise th = "th"

say day.dayofweek dayofmonthl Ith "January"
end

You have just completed Step 24.

26 VM/SP System ·Product Interpreter User's Guide

Reading 2

Avoiding Duplicate Names
In any program, it is important not to use a symbol in more than one way. Here is
an extreme example. The SAY expressions help to show to how the values of the
variables LINE and DATA change, during execution.

/* NOT a good example */
do line = 1 to 10

say line
say Enter a line of data
pull 1 i ne
say line
data = data line
say data
line = length(data)
say line

end line
say Done

Figure 9. MESSY EXEC

Looking at some sample input to this exec will help in understanding why you
should not use a symbol in more than one way. If you enter

melvin

as input to this exec, the following will be displayed:

1
ENTER A 1 OF DATA
melvin
MELVIN
DATA MELVIN
11
DONE

Notice how the values of the variables LINE and DATA change. Try running the exec
again but with different input.

From this horrid mess you can learn that:

• It is safer and neater to put what you want to SAY in quotes.

A good example of this can be seen in the result from MESSY EXEC. Because
the expression

Enter a line of data

is not enclosed in quotes, the symbol, LINE, is evaluated and its value is
displayed instead. For example,

Enter a 1 of data

Chapter 3. Variables 27

Reading 2

• Each symbol should be used for only one purpose.

In the MESSY EXEC, the interpreter can not keep track of all the different uses
of the symbols LINE and DATA. Thus, the program does not run correctly.

For small programs it is fairly easy to limit the use of a symbol to one purpose,
however, it is more difficult to do this for large programs. We shall return to
this subject in the next reading of this chapter.

Reading 2 continues in Chapter 4, "Expressions" on page 35.

28 VMjSP System Product Interpreter User's Guide

Reading 3

How Much Should You Tell Your Subroutine?
Reading 3

When you are writing a subroutine, you may not be aware of the names of all the
variables in the main program. Of course, you could check by reading through the
whole program every time you wanted to invent a new name. But this is tedious and
prone to error.

The PROCEDURE Instruction
To make the interpreter forget, for the time being, all the variables it knows, use the
PROCEDURE instruction.

After this instruction has been executed, new variables can be created that will be
regarded as "different," even if some of them have the same names as variables that
existed before the PROCEDURE instruction was executed.

When a RETURN instruction is executed, the new variables are forgotten and the
original variables are remembered.

A PROCEDURE instruction can only be used within an internal routine; within that
routine, it can only be used once. If the PROCEDURE instruction is used in an
internal routine, it must be the first instruction in the routine. For further details on
the PROCEDURE instruction, see the VMjSP System Product Interpreter Reference.

In this next example, COUNT is used for two separate purposes.

Chapter 3. Variables 29

Reading 3

count = 999
list = 3 4 5 6 7

CALL average 1 i st -----------,
I

,----..
/* At this point:
/*

EXIT

~
AVERAGE:

COUNT = 999 */
RESULT = 5 */

/* The argument must be a list */
/* of numbers, delimited by blanks.*/
/* The average is returned. */

PROCEDURE

/* At this point the value of LIST */
/* would be LIST */

~
ARG inputlist
sum = 0
do count = 1 to words(inputlist)

sum = sum + word(inputlist,count)
end

RETURN
I

sum/words(inputlist)

The PROCEDURE EXPOSE Instruction
To share a limited set of variables between the main routine and the subroutine
(leaving all the other variables protected) use:

PROCEDURE EXPOSE name [name] [name] ...

where:

name is the name of a variable to be shared. For further details, see the
PROCEDURE instruction in your VMjSP System Product Interpreter
Reference.

30 VM/SP System Product Interpreter User's Guide

Reading 3

The Existence of Variable Names

The SYMBOL() Function
It is sometimes useful to know whether a symbol has already been used as a name of
a variable. The SYMBOL() function returns:

BAD if the argument is not a valid symbol

VAR if the variable exists

LIT if the variable does not exist, or if the argument is a constant symbol, such
as 3D.

This example shows how to make sure that payment is never added to an empty
string, which would cause a syntax error.

if symbol ("CASH") = "LIT" then cash = 8
cash = cash + payment

Notice what happens if the argument of SYMBOL() is not in quotes.

cash = 188
say symbol (CASH)

say symbol ("CASH")

/* says 'LIT ' , because 180 is */
/* a literal */
/* says 'VAR ' , because CASH is */
/* the name of a variable */

Without the enclosing quotes CASH is treated as a variable, and its value is
substituted before the function is performed.

Finally, an example:

/* Example: the SYMBOL() function */
firstclass = 128
secondclass = 88
do until symbol Cans II cl ass) = "VAR"

say "What class? First or second."
pull ans

end
say "That will be" value(ansllclass) "dollars, please."

Figure 10. TICKETS EXEC

The DROP Instruction
Usually, the place where you want the interpreter to temporarily hide variables is at
the beginning of subroutines. For this you can use the PROCEDURE instruction
(described earlier). But in other situations, you may want the interpreter to forget
about a variable altogether. In this case, use the DROP instruction.

DROP name [name] [name] .•.

where:

name is name of a variable to be dropped.

Chapter 3. Variables 31

Reading 3

You can drop more than one variable using a single DROP instruction. You can
also drop all the elements of an array by specifying the stem of the array. For
example:

DROP player.

Once dropped in this way, the old values of the variables cannot be "remembered."

Arrays with More Than One Dimension
You can have more than one period in a compound symbol. For example, here is
the beginning of a program for playing checkers. BOARD is a 2-dimensional array, 8
squares by 8 squares. The squares on the board are called BOARD. ROW. COL and there
are 64 of them altogether. The picture shows how the "men" are set out at the start
of the game.

8

7

6

5

4

3

Row 2

2 3 4 5 6 7 8

Column

32 VMjSP System Product Interpreter User's Guide

/* This program simulates a board on which the game of */
/* checkers can be played. */

/* In the internal representation, Red's "men" are */
/* represented by the character "r" and red's "kings" */
/* by the character "R". Similarly, Black's "men" and */
/* II ki ngs II are represented by "b" and "B". * /
/*--*/
/* Clear the board */
/*--*/
board. = II II

/*--*/
/* Set out the men */
/*--*/
do col = 1 by 2 to 7

board.1.co1 = "r"
end
do col = 2 by 2 to 8

board.2.co1 = "r"
end
do col = 1 by 2 to 7

board.3.co1 = "r"
end
do col = 2 by 2 to 8

board.6.co1 = "b"
end
do col = 1 by 2 to 7

board.7.co1 = "b"
end
do col = 2 by 2 to 8

board.8.co1 = "b"
end

Figure 11. CHECKERS EXEC

Reading 3 continues in Chapter 4, "Expressions" on page 35.

Reading 3

Chapter 3. Variables 33

Reading 3

34 VM/SP System Product Interpreter User's Guide

Expressions

Chapter 4. Expressions

An expression is something that can be computed. In your VM/SP System Product
Interpreter Reference, you will find model instructions like:

symbol = expression

SAY expression

IF expression THEN

When you are writing instructions in one of your programs, you can replace the
word expression with any expression that can be evaluated. Here are some
expressions:

2+2 /* Its value is '4' */

"A" "B" "C" /* Its value is 'A B C' * /

5 < 7 /* Its value is '1', because * /
/* the comparison is true * /

In this chapter we discuss how to write expressions that the interpreter can compute.
The rules that the interpreter uses for evaluating an expression (that is, finding its
value) will be explained. The chapter is divided into sections, namely:

• Operators
• True and False
• Functions
• Loopsl

• Arithmetic
• Groups of instructionsl

• Text
• Comparisons
• Conversion and translation.

Each section has its own introduction describing what is in it and advising you what
to leave until Reading 2 or Reading 3.

1 This chapter includes brief discussions on "Loops" and "Groups of Instructions." These topics are included here so
that you will be able to understand some of the examples given later in this chapter. There are further discussions
on both topics later in the book ("Loops" on page 184, Groups of Instructions in "Selection" on page 172).

Chapter 4. Expressions 35

Reading 1

Operators
In this section:

Reading 1 immediately following, describes:

• Operators and Terms

• Order of evaluation

• Parentheses.

Reading 2 on page 39, describes:

• Using the TRACE instruction to see how expressions are being evaluated

• Data types

• Prefix operators

• Priority of operators

• Using parentheses.

Reading 3 skips this section.

• Continue Reading 3 in "Functions" on page 49.

Operators and Terrl1s
Reading 1

An expression can include operators that operate on the adjacent terms. Here are
some operators:

+
*

Add
Multiply

II Concatenate Goin together).

In this example, the operators act on the terms 4 and 3.

say 4 + 3
say 4 * 3
say 4 II 3

/* says 17 1

/* says 1121
/* says 143 1

*/
*/
*/

The terms that the operators work on can be numbers, strings in quotes, variables,
the results obtained from a function call, or the result that has been obtained by
evaluating the expression so far.

36 VM/SP System Product Interpreter User's Guide

Reading 1

Order of Evaluation .

Parentheses

Expressions are usually evaluated from left to right.

F or example,

10 - 3 + 2

I
7 + 2

I
9

In other words, the value of: 10 - 3 + 2 is: 9.

But some operations are given priority over others. The rules are generally the same
as in ordinary algebra. For example, multiply (*) has a higher priority than subtract
(-).

10 - 3 * 2

I
10 - 6

I I

4

In other words, the value of: 10 - 3 * 2 is: 4.

We shall discuss the rules of priority again in Reading 2 on page 41.

When the interpreter finds an expression in parentheses, it evaluates the value of the
expression inside the parentheses first.

F or example:

The value of 10 * (3 + 4) is: 70
The value of 10 * (3 II 4) is: 340.

Note, however, that if there is a symbol or a string immediately to the left of the left
parenthesis, this denotes a function. This concept is discussed later in "Functions"
on page 49.

Did You Understand That?
1. You probably remember that if the name of a variable is found in an expression,

the value of that variable will be substituted for its name.

Chapter 4. Expressions 37

Reading 1

F or example:

/* After the instructions */
something = "mice"
a = 7

say "Cats chase" something

say a + 3

/* says ICats chase mice ' */
/* says I 10 I * /

a. What will this program display on the screen?

PERSONS EXEC

/* Example: simple arithmetic using variables */
pa = 1
rna = 1
kids = 3

say "There are" pa+ma+kids "people in this family"

b. What will this program display on the screen?

COUNTING EXEC

/* Example: simple arithmetic using variables */
thumbs = 1
fingers = 4
hands = 2

say "It's easy to count up to",
hands * (thumbs + fingers)

Answers:

1.

a. There are 5 people in this family.
b. It is easy to count up to 10.

You have just completed Step 4.

Reading 1 continues in "True and False" on page 44.

38 VM/SP System Product Interpreter User's Guide

Tracing

Reading 2

Reading 2

To find out how the interpreter will evaluate an expression, use the TRACE
instruction. Some useful forms of this instruction are:

TRACE Intermediates

TRACE Results

TRACE Normal

As each expression is evaluated, the result of each
operation (that is, Intermediate results) is displayed on the
screen.

When each expression has been evaluated, the final result
is displayed on the screen.

Only commands that are rejected by the environment are
displayed on the screen.

When a TRACE instruction is being interpreted, the first letter of the second word
determines what type of tracing will be switched on, and the rest of the word is
ignored.

For example, to TRACE Intermediate results for an expression, you could write:

TRACE I
... expression
TRACE N

Here is a practical example:

/* Example: to show how an expression is evaluated, */
/* operation by operation */
x = 9
y = 2
trace
if x + 1 > 5 * Y
then say II X is big enough II
trace N

Figure 12. TTRACE EXEC

This would cause the following to be displayed on your screen:

ttrace
6 *-* if x + 1 > 5 * y

>V> "9"
>L> "1"
>0> "10"
>L> "5"
>V> "211
>0> "10 11

>0> "0 11

8 *-* trace N
Ready;

Chapter 4. Expressions 39

Reading 2

Data Types

where:

- This is the instruction being traced. The number on the left is the line
number in your program.

>V> Value of a Variable.

>L> Value of a Literal.

>0> Result of an Operation.

For Figure 12, you can see that the final result is 10 1 (false). And because the IF
expression is false, the THEN clause is not executed.

To display only the final results use TRACE Results:

TRACE R

TRACE N

For example:

/* Example: to show how an expression is evaluated, */
/* operation by operation using TRACE R */
x = 9
y = 2
trace R
if x + 1 > 5 * Y
then say "x is big enough"
trace N

Figure 13. RTRACE EXEC

When used in the same program, this would give:

ttrace
6 *-* if x + 1 > 5 * y

»> "0"
8 *-* trace N

Ready;

where:

»> This is the final result.

Again, you can see that the final result is 10 1 (false). And because the IF expression
is false, the THEN clause is not executed.

The values of REXX variables and expressions are always character strings.

40 VM/SP System Product Interpreter User's Guide

Prefix Operators

So it is possible to write, for example:

dollars = 5
cents = 95

if cents < 10 then price = dollarsl.0"cents
else price = dollars"."cents
say "Price =" price /* says IPrice = 5.95 1 */

Reading 2

A string of digits is like any other character string but, when an arithmetical
operation is performed on a string, the result is rounded. (The default is to round to
nine significant digits.)

/* Example: an arithmetical operation on a string of */
/* digits results in a number (rounded if necessary) */

dicey = 123456.123456

say dicey

say dicey + 0

Figure 14. DICEY EXEC

/* Assigns the 13-character
/* string to DICEY

/* Says 1123456.123456 1

*/
*/

*/

/* The expression is evaluated */
/* with an accuracy of 9 */
/* significant digits (The */
/* default). The result is */
/* 1123456.123 1; and this is */
/* what is displayed. */

Most operators work on the terms of the expression on both sides of the operator.
If you omit either term, an error occurs. However, three operators work only on the
term that follows them:

+ Take (a number) as is

Negate (a number)

\ --, Logical NOT; negates, I becomes 0 and vice versa.

These three operators are called prefix operators. (Notice that the characters "+"
and" -" can represent both ordinary operators and prefix operators.)

Priority of Operators
When evaluating an expression, the interpreter usually works from left to right. But
some operators are given a higher priority than others.

The complete order of precedence of the operators is (highest at the top):

\ --, - + (prefix operators)

** (exponentiation)

* I % II (multiply and divide)

Chapter 4. Expressions 41

Reading 2

+ -

II II II abuttal

\== -,==
/== \= -, = /=
> < » « ><
<> >= \< -,<
»= \« -,«
<= \> -,> «=
\» -,»

&

1&&

(add and subtract)

(concatenation, with/without blank)

(comparison operators)

(and)

(or, exclusive or).

For any expression, you can discover the sequence that will be used from the
preceding list of priorities. For example:

Say 3 + 2*5 /* says '13' */
Because multiply (*) has a higher priority than add (+), the multiply operation is
done before the operation on its left.

Similarly, because add (+) has a higher priority than concatenate (blank),

Say 3 2+2 5 /* says '3 4 5' * /

For full details see your VM/SP System Product Interpreter Reference.

Using Parentheses
You can use parentheses to force evaluation in a different order, because expressions
inside parentheses are evaluated first. For example:

The value of6 - 4 + 1 is 3.
The value of 6 - (4 + 1) is 1.

The value of 3 + 2112 + 3 is 55.
The value of 3 +(2112)+ 3 is 28.

For full details on the use and priority of operators, see your VM/SP System
Product Interpreter Reference.

Did You Understand That?
1. What is the value of:

a. 4 + 20 "tailors"
b. 24 = 4 + 20
c. "eggs" = "eggs" & 2*2 = 4
d. 3/2*5
e. 3 II 7+7
f. 3(2+2)
g. (2+2)3.

42 VMjSP System Product Interpreter User's Guide

Reading 2

Answers:

1.

a. 24 tailors (add before concatenate)
b. 1 (add before comparison)
c. 1 (comparison before AND, multiply before AND, comparison before

AND)
d. 7.5 (operators that have the same priority are processed left to right)
e. 314 (add before concatenate)
f. calls the function "3" with the argument "4" (or gives a syntax error if "3"

does not exist)
g. 43 (evaluate expression in parentheses first; then abut).

You have just completed Step 25.

Reading 2 continues in "True and False" on page 44.

Chapter 4. Expressions 43

Reading 1

True and False
In this section:

Reading 1 immediately following, describes:

• Comparisons

• Using TRUE and FALSE

• The Equal Sign

• The AND operator

• The OR operator.

Reading 2 on page 47, describes:

Comparisons

• The logical operators: NOT, AND and OR.

Reading 1

Comparisons are performed using the operators

> Grea ter than
Equal

< Less than.

These operators can be combined with each other and with the not character (\ or
---.). The result of these comparisons is either TRUE or FALSE. For more
information see your VMjSP System Product Interpreter Reference.

Using True and False
If the expression is:

TRUE, the computed result is '1'

FALSE, the computed result is '0'.

F or example:

say 4 < 7 /* says '11, meaning,TRUE */

say "Chalk" = "Cheese" /* says 10 1, meaning FALSE */
Instructions like:

IF expression THEN

must be given an expression that computes to '0' or '1'. The following two
fragments will give the same result.

ready = "YES"

if ready = "YES" then •..

44 VMjSP System Product Interpreter User's Guide

Reading 1

or

ready = 1

if ready then

You can use whichever form you prefer.

The Equal Sign (=)
Notice that the equal sign (=) can have two meanings in REXX depending on its
position in a clause.

For example:

amount = 5 /* The variable AMOUNT gets the value 5 */

say amount = 5 /* Compare the value of AMOUNT with 5 */
/* If they are the same, says 111 */
/* Otherwise, says 10 1 */

The rule is, a clause beginning

symbol = •••

is an assignment. An equal sign appearing anywhere else in a clause stands for the
comparison operator. (In a comment or a string, the equal sign is simply a
character; it is not an operator.)

The AND (&) Operator
To write an expression that is only true when everyone of a set of comparisons is
true, use the AND (&) opera tor:

If ready = "YES" & steady = "RIGHT"
then say "GO"

This means "If READY has a value of YES and STEADY has a value of RIGHT, then
say GO. Otherwise, do nothing."

The OR (I) Operator
To write an expression that is true when anyone of a set of comparisons is true, use
the inclusive OR (I) operator:

If ready = "YES" I steady = "RIGHT"
then say "GO"

This means "If either READY has a value of YES or STEADY has a value of RIGHT,
then say GO. Otherwise, do nothing."

Did You Understand That?
1. What appears on the screen when the following program is run?

FAIR EXEC

/* A fair comparison */
say "Apples" = "Apples"

Chapter 4. Expressions 45

Reading 1

2. What appears on the screen when the following program is run?

MEASURES EXEC

/* Example: comparing numbers */
dozen = 12
score = 20
say score = dozen + 8

/* Using the AND operator */
say dozen = 12 & score = 21

Answers:

1. What is displayed is:

fair
1
Ready;

This is because 'Apples' is equal to 'Apples', so the result is '1' (true).

2. What is displayed is:

measures
1
o
Ready;

The last line of output may need some explanation. The first comparison (dozen
= 12) gives' l' (true); but the second comparison (score = 21) gives '0' (false).
So the result is '0' (false).

Remember, the AND operation gives a result of' 1 ' (true) only if both operands
are '1'.

You have just completed Step 5.

Reading 1 continues in "Functions" on page 49.

46 VM/SP System Product Interpreter User's Guide

Reading 2

Logical Operators
Reading 2

The three most frequently used logical operators are:

& (ampersand)

I (vertical bar)

NOT
AND
OR.

(There is also an Exclusive OR operator (&&), but it is not often used.)

Logical operators can only process the values' l' or '0'.

The NOT (-., \) Operator
The not operator (--', \), is placed in front of a term and changes its value from true
to false or fromfalse to true.

say --, 0
say -. 1
say -. 2
say \ (3 = 3)

/* says 111
/* says 10 1

/* gives a syntax error
/* says 10 1

*/
*/
*/
*/

The AND (&) Operator

The OR (I) Operator

The and operator (&), is placed between two terms. It gives a value of true only if
both terms are true.

say (3 = 3) & (5 = 5)
say (3 = 4) & (5 = 5)
say (3 = 3) & (4 = 5)
say (3 = 4) & (4 = 5)

/* says
/* says
/* says
/* says

111
10 1
10 1
10 1

*/
*/
*/
*/

The or operator (I), is placed between two terms. It gives a value of true unless both
terms are false.

say (3 = 3) (5 = 5)
say (3 = 4) (5 = 5)
say (3 = 3) (4 = 5)
say (3 = 4) (4 = 5)

/* says
/* says
/* says
/* says

111
111
111
10 1

*/
*/
*/
*/

Did You Understand That?
1. Suggest suitable values for X and Y in this program fragment:

a. if month = "DECEMBERn & day_of_month = 25
then say X

b. if command = "STopn I message = "WATCH ourn
then color_of_flag = y

2. In the preceding program fragment, what happens if:

a. month = JUNE but day_of_month = 25?
b. command = GO but message = WATCH OUT?

3. Suitors may be TALL (or not), DARK (or not), HANDSOME (or not), and
RICH (or not). A certain princess specifies:

If TALL & DARK I HANDSOME & RICH
then say II I wi 11 marry him"

Chapter 4. Expressions 47

Reading 2

A certain prince has the following attributes:

TALL - yes
DARK-yes
HANDSOME - no
RICH - no.

If he asks for her hand (and half the kingdom, of course) what will she say?
You may need to review "Priority of Operators."

Answers:

1.

a. X could be Merry Chri stmas.

b. Y could be RED.

2. If so,

a. Nothing is said
b. COLOR_OF _FLAG is set to the value of Y.

3. I will marry him

The AND operator (&) has priority over the OR operator (I). In other words,
REXX computes the expression as

(TALL & DARK) I (HANDSOME & RICH)

You have just completed Step 26.

Reading 2 continues in "Functions" on page 49.

48 VM/SP System Product Interpreter User's Guide

Functions

Reading 1

Reading 1

A Junction call can be written anywhere in an expression. It performs the
computation named by the function and returns a result, which is then used in the
expression in place of the function call.

In this section:

immediately following, describes:

• The idea of a function

• REXX built-in functions

• User-written function.

Reading 2 on page 52, describes:

• Writing your own functions

The ARG instruction and the ARG function

The RETURN instruction.

Reading 3 on page 56, describes:

• Induding your own functions in the exec file of the program that uses them

• Functions written in S/370 Assembler Language.

The Idea of a Function
Reading 1

To help explain the idea of a function, think about the fictitious function:

HALF(

For example:

The value of HALF(6)
The value of HALF(3+5)
The value of 7 + HALF(5-3)

is 3.
is 4.
is 8.

(The full specification and code for the HALF() function will be discussed later, on
page 54.)

Quite generally, if the interpreter finds

symbol(express;on .•.)

in an expression, with no space between the last character of the symbol and the left
parenthesis, it assumes that symbol is the name of a function and that this is a call to
the function symbol ().

The value of a function call depends on what is inside the parentheses. (It is an
error to leave out the right parenthesis). When the value of the function has been
calculated, the result is put back into the expression in place of the function call.

Chapter 4. Expressions 49

Reading 1

Built-in Functions

For example:

say 7 + HALF (6) /* becomes 7 + 3 which says '10' */
x = HALF(4 + 6) - 1
say x

/* becomes x = 5 - 1 */
/* says '4' */

The expression inside the parentheses is called an argument. As you can see, an
argument can itself be an expression; the interpreter computes the value of this
expression before passing it to the function.

If a function requires more than one argument, they must be separated by commas.
For instance, to obtain the greatest of a set of numbers you can use the REXX
function:

MAX (number, number, .•.)

F or example:

The value of MAX(2,3,7,4)
The value of MAX(-9,3+4,5)

is 7.
is 7.

Remember that a function call, like any other expression, does not usually appear in
a cIa use by itself.

x = 12
y = half(x)
half(x)

x = half(x)

/* makes y equal to half(x) */
/* calls '6 EXEC' if it */
/* exists! See page 119. */
/* halves x */

Over 50 functions (like the MAX() function, shown previously, are "built-in" to
REXX. In this book, they will be introduced where you are most likely to want to
use them. For example, arithmetical functions like FORMAT() and TRUNC()
appear in the section on arithmetic. You will find a dictionary of built-in functions
in your VMjSP System Product Interpreter Reference. From now on, if we refer to a
function without saying where to find it, assume that it is a REXX built-in function.

User-Written Functions
You can also write your own functions. And you can use functions written by other
people in your organization.

If a function is in the same file as the program that uses it, it is called an internal
function. If it is in a separate file it is called an external function. Later, we shall
see that HALF() is an external function.

Did You Understand That?
1. What is the value of:

a. HALF(HALF(26) + HALF(6)
b. MAX(3, HALF(8))
c. HALF(100)
d. HALF (100)

2. The RANDOM() function can be used for games and for statistical models.
For example, to obtain a number, chosen at random from the range 1 through 6,
you could write:

random(1,6)

50 VM/SP System Product Interpreter User's Guide

Reading 1

Write a program called TOSS that will display either the word "Heads" or Gust
as likely) the word "Tails". Run your program a number of times. Are the
results like those you could obtain by tossing a coin?

Answers:

1. If used as an expression (for example, as part of a SAY instruction) the result
would be:

a. 8
b. 4
c. 50
d. HALF 100 (Not a function, because there is no name immediately to the

left of the left parenthesis.)

2. A simple solution would be:

TOSS EXEC

/* Simulates tossing a coin */
if random(l,2) = 1
then say "Heads"
else say "Tails"

If you needed to make a lot of two-way decisions, you might make use of this
program. The CP command

set pf6 immed toss

would let you reach a decision quickly, just by pressing the Program Function
key.

You have just completed Step 6.

Reading 1 continues in "Loops" on page 59.

Chapter 4. Expressions 51

Reading 2

User-Written Functions
Reading 2

ARG Instruction

If you find you need a function that is not provided by REXX, you can easily write
one of your own. You will need:

• The ARG instruction (or the PARSE ARG instruction, or the ARG() function)
to obtain the arguments

• The RETURN instruction to return the result.

To obtain the arguments (that is, the computed values of the expression or
expressions inside the parentheses of the function call), use:

ARG myargl, myarg2 •..

where:

myargl, myarg2, •.. are the names you choose for the variables that will be given
the values of the arguments.

These values will be translated to uppercase. If you want to assign them without
transla ting them to uppercase, use

PARSE ARG myargl, myarg2 •..

The ARG() Function
If you do not want to give names to the arguments, you can use the function:

ARG(n)

In this way you can refer to the nth argument.

RETURN Instruction
To use the result from a function call, the data must be returned from the function
call to the main program. To return the result, use the following instruction:

RETURN expression

The interpreter computes the value of expression and returns the value to the main
program.

A function must return some data.

In this next example, the expression in the main program is a string of words. One
of the words is computed by a function.

52 VM/SP System Product Interpreter User's Guide

SQUARE EXEC
/* in main program */
height = 4
width = 4
say THIS THING IS A

/* is equivalent to */
/* the instruction: */

say THIS THING IS A

Reading 2

SHAPE(height,width) OBJECT

SHAPE EXEC

arg first, second
if first = second

then return "SQUARE"

SQUARE OBJECT

The RETURN instruction must specify some data when returning from a function.
If the RETURN instruction does not do so, you will receive a syntax error. You
can intentionally leave out the data on the RETURN instruction if you want to
warn the user that the input arguments, if any, are invalid.

For example, you can write:

return /* error message */
When the function is called with invalid arguments, the RETURN instruction,
including the comment, is displayed on the screen (Error 45) followed by the line
containing the function call (Error 40).

It might be wise to check that the right number of arguments has been submitted.
This can be done using the ARG() function.

if argO ...,= 1
then return /* wrong number of arguments */
See the ARG() function in your VMjSP System Product Interpreter Reference for
other ways of using this function.

Did You Understand That?
Here is the specification and code for the HALF() function that we discussed on
page 49.

Chapter 4. Expressions 53

Reading 2

HALF EXEC

/* HALF(number) */
/* */
/* This function returns half of IInumber li

• If IInumber ll */
/* is not even, the IIbig half ll is returned. That is, */
/* integer division by 2 is performed and, if there is */
/* a remainder, it is added to the result. */
/* */
/* The value of HALF(6) is 3 */
/* The value of HALF(7) is 4 */
/* */
/* If IInumber ll is not a whole number, nothing is */
/* returned. This will cause a syntax error to be */
/* raised in this program and in the calling program. */
/* */
arg number
if datatype(number,whole)
then return number%2 + number//2
else return /* first argument is not a whole number */

1. Use XEDIT to create a file containing the last five lines of HALF EXEC. Write
an exec called TESTHALF that uses HALF and displays the result of:

a. Half(3) Half(4) Half(S)

b. Half(4.S)

2. Alter HALF EXEC so that it signals an error if more than one argument is
supplied. Alter TESTHALF so that it contains:

say IITestingll HALF(5,7)

Write an exec that will give you a simple set of error messages.

Answers:

1. A possible answer is:

TESTHALF EXEC

/* Test cases for HALF EXEC */
say IICase l(a)1I
say half(3) half(4) half(5)
say
say IICase l(b)"
say half(4.5)

54 VM/SP System Product Interpreter User's Guide

When run, the TESTHALF EXEC gives the result:

testhalf
Case l(a)
223

Case l(b)
18 +++ return /* first argument is not a whole number */

Reading 2

Error 45 running HALF EXEC, line 18: No data specified on function RETURN
6 +++ say half(4.5)

Error 40 running TESTHALF EXEC, line 6: Incorrect call to routine
Ready(20040);

2. A possible answer is:

TESTHAL2 EXEC

/* Test case for modified HALF EXEC (See Question 2)*/
say "Testing" half2(5,7)

The TESTHAL2 EXEC calls a modified version of HALF EXEC, named
HALF2 EXEC.

HALF2 EXEC

/* */
if argO 1
then return /* wrong number of arguments */
arg number
if datatype(number,whole)
then return number%2 + number//2
else return /* first argument is not a whole number */

When run, the HALF2 EXEC results in:

testha12
3 +++ return /* wrong number of arguments */

Error 45 running HALF2 EXEC, line 3: No data specified on function RETURN
2 +++ say "Testing" half2(5,7)

Error 40 running TESTHAL2 EXEC, line 2: Incorrect call to routine
Ready(20040);

You have just completed Step 27.

Reading 2 continues in "Arithmetic" on page 63.

Chapter 4. Expressions 55

Reading 3

A Square Root Function
Reading 3

This is an example of a function that you could code for yourself.

/* The SQUARE ROOT function */
/* */
/* SQRT(number) */
/* */
/* where "number" is a nonnegative REXX number, */
/* returns the square root of "number". Precision is 9 */
/* significant figures, independent of the setting of */
/* NUMERIC DIGITS (explained on page 73). */
/* */
/* Implementation details: "number" is normalized to */
/* give an even exponent (so that the exponent can be */
/* dealt with separately later) and a mantissa between */
/* 1 and 100. The most significant digit of the result */
/* is found. */
/* */
/* The mantissa is multiplied by 100, the exponent is */
/* reduced by 2 to compensate, the partial result */
/* (ROOT) is multiplied by 10, (leaving a zero in the */
/* units position) and the units digit of this partial */
/* result is then found. And so on. */
/* */
/* Finally, the result is adjusted using the computed */
/* exponent. */

/*--*/
/* Set precision */
/*--*/
numeric digits 10 /* for partial results */

/* use one digit more */
/* than final precision */

/*--*/
/* Check arguments */
/*--*/
if argO -.= 1

then return /* wrong number arguments */
arg x
if -. datatype(x,number)

then return
if x < 0

then return

/* argument not a number */

/* argument is negative */

/* continued ••. */

Figure 15 (Part 1 of 2). SQRT EXEC

56 VM/SP System Product Interpreter User's Guide

/*--*/
/* Normalize: */
/* FROM * /
/* x the argument * /
/* COMPUTE */
/* mant the mantissa, where 0 < mant < 100 */
/* exp the exponent, where exp is even */
/*--*/

/* Format so that 0 < mant < 10 */
parse value format(x""O) with mant "E" exp

/* Modify so that exp is even */
if exp = 1111 then exp = 0
if exp//2 ~= 0 then do

mant = mant * 10
exp = exp - 1

end

/*--*/
/* Find root by successive approximation */
/*--*/
root = 0
do 10

do digit = 9 by -1 to 0, /* find largest digit, */
whi 1 e, /* such that * /

(root + digit)**2 > mant /* (root+digit)squared */
end /* is ~> mant */
root = root + digit
if root**2 = mant then leave
root = root * 10
mant = mant * 100
exp = exp - 2

end

/*-----------------~------------------------------------*/
/* Adjust for computed exponent */
/*--*/
numeric digits 9
return root * 10**(exp/2)

Figure 15 (Part 2 of 2). SQRT EXEC

Internal Functions

Reading 3

Instead of writing a function as a separate file, you may prefer to include it in your
main program. If the function is called many times by your main program, there
will be a perceptible improvement in performance.

Begin your function with a label. To avoid problems with duplicate names, use the
PROCEDURE instruction (see "The PROCEDURE Instruction" on page 29).

Chapter 4. Expressions 57

Reading 3

/* This program tabulates the square roots of the */
/* whole numbers in the range 1 to 100. */
/* */
/* The output is stored in the file ROOTS TABLE A. */
/* The previous version of that file, if any, is */
/* overwritten. */

"ERASE ROOTS TABLE All
do j = 1 to 100 until rc ~= 0

IIEXECIO 1 DISKW ROOTS TABLE A (STRING II ,
format(j,3,0) format(sqrt(j),3,8)

end
if rc ~= 0
then say IIUnexpected return code II rc,

IIfrom EXECIO 1 DISKW command in ROOTS EXEC II
exit
/*--*/
/* square root function */
/*--*/
SQRT: procedure

/* From here onwards, the code */
/* is the same as that shown in */
/* SQRT EXEC on page 56. */

Figure 16. ROOTS EXEC

Functions Written in S/370 Assembler Language
A further improvement in performance can be obtained by writing your function in
Systemj370 assembler language. However, this is only likely to be worthwhile for a
function used very frequently, and by many programs.

Consult your System Support specialist or your VMjSP System Product Interpreter
Reference for more information.

Reading 3 continues in "Arithmetic" on page 63.

58 VM/SP System Product Interpreter User's Guide

Loops

Reading 1

Reading 1

This whole section, "Loops" is covered in Reading 1.

A loop is a part of a program in which the same sequence of instructions are
executed repeatedly. This is a good point to interrupt our discussion on expressions
and take a look at one or two things about loops:

• How to write a loop that keeps asking for input until a valid answer is keyed in

• How to stop a program that is in an endless loop.

The DO Instruction
To build loops, you should use the REXX instruction DO. This is described fully in
a later section, "Loops" on page 184.

A "DO UNTIL" Loop
There is one particular kind of loop that we shall need to use in our examples in the
next two sections. It is the one where, when all the instructions inside the loop have
been executed, a decision is made either to go on or to go back and repeat the
instruction again.

The diagram shows why this is called a loop. The diamond represents a decision
about which way to go.

instruction 1
instruction2
instruction3

False (Go back)

Chapter 4. Expressions 59

Reading 1

In REXX programs, this should be written:

DO UNTIL expression
instruction1
instruction2
instruction3

END

where:

/* and so on */

express i on is any expression that evaluates to give' l' (true) or '0' (false). The value
of expressi on is computed every time the interpreter reaches the keyword END; if the
result is '0', the interpreter loops back to instruction!. Otherwise, execution
continues with the instruction following the END instruction.

For example, the program in Figure 17 will go on asking the same question until the
user answers "12."

/* Just testing you */
DO UNTIL answer = 12

END

say "What is three times four?"
pull answer

Figure 17. DOZEN EXEC

Geiiing Out of Loops
This program will never finish.

/* This program never ends */
DO UNTIL moon = blue

END

say "We are still waiting"
moon = silver

Figure 18. NEVER EXEC

You can recognize this situation because, when you type in another command, eMS
does not execute it. If by any chance you find that you are running such a program,
enter the eMS immediate command to halt interpretation:

HI

Sooner or later, you will return to eMS.

60 VM/SP System Product Interpreter User's Guide

Reading 1

On the other hand, the program in Figure 19 is nearly impossible to get out of if
you do not know what the answer is.

/* Guess the secret password! */
DO UNTIL answer = "I QUIT"

END

say "What is your answer"
pull answer

Figure 19. ABRACADA EXEC

You can recognize this situation because, whatever you do, the words VM READ
continue to appear in the bottom right hand corner of your screen. And typing
in HI is no good. It just gets compared with I QUIT.

If you do not know the answer, the simplest way out is to enter CP mode and re-IPL
eMS. Enter:

flcp i cms

This will cause CP to take over and issue an IPL CMS command.

Did You Understand That?
1. Write a program called WHATDA Y EXEC that keeps on asking what day of

the week it is. Your program should finish as soon as the user gives the right
answer. You can use the function DATE(WEEKDA Y) to find out what the
date really is.

2. Write a program called TESTS EXEC that keeps on asking simple arithmetical
questions until the user has given five correct answers. You can use the
RANDOMQ function to generate some numbers at random, and ask the user to
add them together.

F or example:

RANDOM (1,9)

Gives a whole number in the range 1 through 9.

Chapter 4. Expressions 61

Reading 1

Answers:

1. A possible answer is:

WHATDAY EXEC

/* Example: to make the user say what day of the */
/* week it is today. */
do until reply = date(weekday)

say "What day of the week is it? II
say "(The first letter of your response should be in"
say "uppercase, the rest of the word should be in"
say "lowercase.)"
parse pull reply
if reply ...,= date(weekday)
then say "No, it is" date(weekday)

end
say "Correct!1I

2. A possible answer is:

TESTS EXEC

/* Arithmetical test */
credits = 0
do until credits = 5

a = random(1,9)

b = random(1,9)

/* Choose a whole number */
/* between 1 and 9. Choose */
/* at random. */

say IIWhat is" a 11+" b "?"
pull answer

end

if answer = a + b
then credits = credits + 1
else say a "+" b "is" a+b

You have just completed Step 7.

Thatis enough about loops for now. Let us return to the subject of expressions by
discussing Arithmetic.

Reading 1 continues in "Arithmetic" on page 63.

62 VM/SP System Product Interpreter User's Guide

Arithmetic

Reading 1

In this section:

immediately following, describes:

• Numbers

• Checking your input

• Addition, subtraction, multiplication

• Division

• Range of numbers allowed

• Exponential notation.

Reading 1

Reading 2 on page 69, describes:

• Formatting numeric output

• Specifying conventional and exponential notation.

Reading 3 on page 73, describes:

Numbers

• Using the ** operator to compute the nth power of a number

• Using the NUMERIC DIGITS instruction

• Using the SIGN() function

• Rounding and truncation.

Reading 1

We begin this section with some examples of numbers:

12

0.5

3.5E6

This is a whole number or integer.

This is a decimal fraction or decimal (one half).

This is a floating point number (three and a half million). It uses
exponential notation. The portion that follows the 'E' says how many
places the decimal point must be moved to the right to make it into an
ordinary number.

This notation is useful when dealing with very large or very small
numbers.

- 5 This is a signed number (minus five).

Chapter 4. Expressions 63

Reading 1

Checking Your Input
Before attempting to do arithmetic on data entered from the keyboard, you should
check that the data is valid. You can do this using the DATATYPE() function.

In its simplest form, this function returns the word, NUM, if the argument (the
expression inside the parentheses) would be accepted by the interpreter as a number
that could be used in arithmetical operations. Otherwise, it returns the word,
CHAR.

The value of datatype(49) is NUM.
The value of datatype(5.5) is NUM.
The value of datatype(5.5.5) is CHAR.
The value of datatype(5,000) is CHAR.
The value of datatype(5 4 3 2) is CHAR.

So, if you wanted the user to keep trying until entering a valid number you could
write:

/* Example requlrlng numeric input */
do until datatype(howmuch) II NUM"

say "Enter a number ll

pull howmuch
if datatype(howmuch) = "CHAR"
then say "That was not a number. Try again! II

end

say liThe number you entered wasil howmuch

Figure 20. V ALNUM EXEC

If you were interested only in whole numbers you could use the alternative form of
the DAT ATYPE() function. This form requires two arguments:

1. The data to be tested

2. The type of data to be tested for, for example, a whole number.

Only the first character is inspected. Thus, to test for whole numbers it would
be sufficient to write "W" or "w". But in this book we shall write "whole" to
remind you of the meaning of this argument.

This form of the function:

DATATYPE(number,whole)

returns' l' (true) if number is a whole number, '0' (false) otherwise.

F or example:

do until datatype(howmany,whole)

pull howmany

end

64 VM/SP System Product Interpreter User's Guide

Reading 1

And if you also wanted to restrict the input to numbers greater than zero you could
write:

do until datatype(howmany,whole) & howmany > 0

pull howmany

end

(& is the AND operator. See "The AND (&) Operator" on page 45.)

By the way, the DAT ATYPE() function can test for other types of data, as well.
See the DATATYPE function in your VMjSP System Product Interpreter Reference
for further details.

Addition, Subtraction, Multiplication

Division

These operations are performed in the usual way. You can use both whole numbers
and decimal fractions.

Operand

+ (plus sign)
- (minus sign)
* (asterisk)

Operation

Add
Subtract
Multiply

Example

Say 7 + 2
Say 7 - 2
Say 7 * 2

1* says 19 1 *1
1* says 15 1 *1
1* says 1141 *1

When it comes to division, you can say whether or not you want the answer
expressed as a whole number (integer). The operators you can use are:

0/0 (percent sign)

j j (two slashes)

j (one slash)

Integer divide. The result will be a whole number. Any
remainder is ignored.

For example:

Say 7 % 2 1* says 13 1 *1
Remainder after integer division.

For example:

Say 7 II 2 1* says 111 *1
Divide.

For example:

Say 7 I 2 1* says 13.5 1 *1

Chapter 4. Expressions 6S

Reading 1

Notice which of these operators is used here:

/* This program works out how to share zero or more */
/* sweets between one or more children, assuming that */
/* a single sweet cannot be split. */

/*--*/
/* Get input from user */
/*--*/
do until datatype(sweets,whole) & sweets >= G

say "How many sweets"
pull sweets

end

do until datatype(children,whole) & children> G
say "How many children"
pull chil dren

end

/*--*/
/* Compute result */
/*--*/
say "Each child will get" sweets%children "sweets",

"and there will be" sweets//children "left over."

Figure 21. SHARE EXEC

You should be careful not to try to divide by zero. If you do, a syntax error will
result. That is why, in Figure 21, the user was not allowed to answer "0" to the
question "How many children".

Because apples and oranges can be cut into pieces, you can use the other kind of
division operator.

children = 5; apples = 7;
say "Each child gets" apples/children "apples."

/* says lEach child gets 1.4 apples. I */

Fractions are usually computed with an accuracy of nine significant digits:

children = 3; oranges = 7;
say "Each child gets" oranges/children "oranges."

/* says lEach child gets 2.33333333 oranges. I */

To summarize:

• The result of a "%" operation is always a whole number. There may be a
remainder; to compute the remainder, write out the expression again, using the
"II" operator.

• The result of a "I" operation can be a decimal.

66 VM/SP System Product Interpreter User's Guide

Reading 1

Range of Numbers
Like a good quality hand-held calculator, the interpreter works out the result correct
to nine digits if necessary. This means nine significant digits, not counting the zeroes
that come just after the decimal point in very small decimal fractions.

say 1*2*3*4*5*6*7*8*9*10*11*12 /* says 1479001600 1 */

say 7/30000000000 /* says: 10.000000000233333333 1 */

The accuracy of computed results can be changed using the NUMERIC DIGITS
instruction. This instruction is described in "The NUMERIC DIGITS Instruction"
on page 73.

Exponential Notation
Numbers much bigger or smaller than these are difficult to read and write, because it
is easy to make a mistake counting the zeroes. It is simpler to use exponential
notation. Very big numbers can be written as an ordinary (fixed point) number,
followed by a letter 'E', followed by a whole number. The whole number says how
many places to the right the decimal point of the fixed point number would have to
be moved to obtain the same value as an ordinary number. So:

4.5E6 is the same as 4500000 (four and a half million).
23E6 is the same as 23000000 (twenty-three million).
1E12 is the same as 1000000000000 (a million million).

The number to the right of the 'E' is called the exponent. If the exponent is
negative, this means that the decimal point is to be shifted to the left, instead of to
the right. So:

4.5E- 3 is the same as 0.0045 (four and a half thousandths)
IE - 6 is the same as 0.000001 (one millionth)

You can write numbers like this in expressions, and also when entering numeric data
requested by REXX programs. The interpreter will use this notation when
displaying results that are too big or too small to be expressed conveniently as
ordinary numbers or decimals. When the interpreter uses this notation, the part of
the number that comes before the 'E' (the mantissa) will usually be a number
between 1 and 9.99999999.

For example:

j = 1
do until j > 1e12

say j /* says 111 */
j = j * 11 /* 1111 */

end /* 11211 */
/* 11331 1 */
/* 114641 1 */
/* 1161051 1 */
/* 11771561 1 */
/* 119487171 1 */
/* 1214358881 1 */
/* 12.35794769E+9 1 */
/* 12.59374246E+10 1 */
/* 12.85311671E+111 */

Numbers written in exponential notation (for example, 1.5e9) are sometimes called
floating point numbers. Conversely, ordinary numbers (for example, 3.14) are
sometimes called fixed point numbers.

Chapter 4. Expressions 67

Reading 1

Did You Understand That?
1. What is displayed on the screen when this program is run?

ARITHOPS EXEC

/* Example: arithmetical operations */
quarter = 25
deuce = 2
say quarter+deuce
say quarter-deuce
say quarter*deuce
say quarter/deuce
say quarter%deuce
say quarter//deuce
x = quarter"E"deuce
say x + 0

Answers:

1. The following is displayed:

arithops
27
23
50
12.5
12
1
2500
Ready;

The last two lines of the program require some explanation. First, x gets the
value '25E2'. This is the same as '25.00' with the decimal point moved 2 places
to the right (in other words, '2500'). When x is used in the arithmetical
expression, the number '25E2' is added to zero, giving a result of '2500'.

You have just completed Step 8.

Reading 1 continues in "Groups of Instructions" on page 77.

68 VM/SP System Product Interpreter User's Guide

Formatting Numeric Output
Reading 2

Reading 2

Columns of figures are easier to read if the numbers are all lined up with the units in
the same column. The FORMAT() function will help you to do this. The first
three arguments are:

1. The number to be formatted

2. The number of character positions before the decimal point

3. The number of character positions after the decimal point.

Here is an example:

/* Example showing how columns of figures are formatted */

qty.1 = 101;
qty.2 = 500;
qty.3 = 60000;
qty.4 = 500;

unitprice.1 = 0.73;
unitprice.2 = 1995;
unitprice.3 = 70000;
unitprice.4 = 400/12;

remark. 1 = OK
remark.2 = OK
remark.3 = OK
remark.4 = OK

say "Quantity Unit Pri ce Total Price . Observations"

do item = 1 to 4
say format(qty.item, 5,0),

format(unitprice.item, 11,2),
format(qty.item * unitprice.item, 12,2),
.. .. remark. item

end

Figure 22. INVOICE EXEC

It displays the data formatted like this:

Quantity
101
500

60000
500

Unit Pri ce
0.73

1995.00
70000.00

33.33

Total Price Observations
73.73 OK

997500.00 OK
4.20E+9 OK

16666.67 OK

The numbers to be formatted should always be small enough to fit into the space
you have reserved for them with FORMAT().

• A simple rule is: always specify at least 9 for the "before the decimal point"
argument. If you do, numbers with more than nine digits will be displayed in
Exponential Notation, and the extra characters required will cause fields to the
right of the number to be shifted right, thus drawing attention to the exception.

• If you do not, the person using your program may be faced with a syntax error
that is difficult to understand.

Look at item 3 in the preceding example. The quantity times the unit price (60,000
times 70,000) gives a total price of 4,200,000,000, which is too big for the nine-digit
field that was specified. The result has therefore been displayed in exponential
notation. This in turn has caused OK to be shifted right.

Chapter 4. Expressions 69

Reading 2

On the other hand, suppose we add the following:

qty.5 = 880000; unitprice.5 = 1; remark.5 = "Big deal II

and change the 4 to a 5 in the DO instruction.

Then the display reads:

invoice
Quantity Unit Price Total Price Observations

101 0.73 73.73 OK
500 1995.00 997500.00 OK

60000 70000.00 4.20E+9 OK
500 33.33 16666.67 OK

12 +++ say format(qty.item. 5,0), format(unitprice.item, II, 2),
format (qty. item * unitprice.item. 12,2)' II II remark.item

Error 40 running INVOICE EXEC, line 12: Incorrect call to routine
Ready(20040);

This error could have been avoided:

1. In a real program, by testing the input values for a maximum number of 99999,
or

2. By allowing space enough for at least nine digits for the integer part.

say format(qty.item, 9,0),
format(unitprice.item, 9,2),
format(qty.item * unitprice.item, 11,2),

II remark. item

Where the formatted data is:

Quantity
101
500

60000
500

880000
Ready;

Unit Price
0.73

1995.00
70000.00

33.33
1.00

Total Price Observations
73.73 OK

997500.00 OK
4.20E+9 OK

16666.67 OK
880000.00 Big deal

Specifying Conventional (Fixed Point) Notation
To stop FORMAT() from returning floating point numbers (when results would
usually be expressed in floating point numbers) use the fourth argument of
FORMAT(). This argument specifies the number of character positions reserved
for the exponent. Exponential notation will not be used if you write:

FORMAT(number,before,after,O)

Be quite sure that the space you have allowed for before and after is sufficient.

70 VM/SP System Product Interpreter User's Guide

Reading 2

Specifying Exponential (Floating Point) Notation

A Special Case

To make FORMAT() return floating point numbers (when results would usually be
expressed in fixed point numbers) use the fifth argument of FORMAT(). This
argument specifies the threshold for expressing the result in exponential notation.
Exponential notation will be used if you write:

FORMAT(number,before,after, ,0)

For other uses of the FORMAT() function, see your VM/SP System Product
Interpreter Reference.

When a floating point number has an absolute value between 1 and 9.99999999 (that
is, when the exponent is zero) the characters "E+O" are always omitted even when
floating point has been specified.

Did You Understand That?
1.

a. Write an exec called REFORMAT that expresses numbers entered by the
user in both fixed point and exponential notation.

b. Test your program with the numbers:

123456789
0.0000000000012345
99999999999ge-6
1.2el0
1.2
1.2e+0

Or, use any other numbers you can think of.

Answers:

1.

a. A possible answer would be:

REFORMAT EXEC

/* Example: to change the format of a number */
do forever

say "Enter a number"
pull answer
if ~ datatype(answer,number) then exit
say "Fixed point equivalent:" format(answer",O)
say "Exponential equivalent:" format(answer""O)

end

Chapter 4~ Expressions 71

Reading 2

b. The following table lists the results you should get when using the test
numbers with the REFORMAT EXEC.

Number entered: Fixed point equivalent: Exponential equivalent:

123456789 123456789 1.23456789E + 8

0.0000000000012345 0.0000000000012345 1.2345E-12

99999999999ge-6 1000000.00 1.00000000E + 6

1.2el0 1200000000000 1.2E+ 10

1.2 1.2 1.2

1.2e+0 1.2 1.2

You have just completed Step 28.

Reading 2 continues in "Text" on page 78.

72 VM/SP System Product Interpreter User's Guide

Exponentiation
Reading 3

The operator ** means "raised to the whole-number power of." So:

2**1 = 2 = 2 (2 to the power of 1)
2**2 = 2*2 = 4 (2 to the power of 2, or 2 squared)
2**3 = 2*2*2 = 8 (2 to the power of 3, or 2 cubed)
2**4 = 2*2*2*2 = 16 (2 to the power of 4).

And, as in ordinary algebra:

2**0 = I
2** -1 = 1/(2**1) = 0.5 (2 to the power of minus 1)
2** - 2 = 1/(2**2) = 0.25 (2 to the power of minus 2).

The number on the right of the ** must be a whole number.

Reading 3

In the order of precedence, the exponentiation (**) operator comes below the prefix
operators and above the multiply and divide operators.

For example:

say -5**2
say 10**3/2**2

/* Says '25'. Same as (-5}**2 */
/* Says '250'. Same as (10**3}/(2**2) */

The NUMERIC DIGITS Instruction
If you want to avoid using exponential notation, or simply want to increase the
accuracy of your calculations, you can use the NUMERIC DIGITS instruction to
change the number of significant digits. (The default setting for NUMERIC
DIGITS is 9.)

F or example:

/* examples of numbers with unusually high precision */

numeric digits 10
say "The largest signed number that can be held"
say "in a 5/370 register is" 2**31 - 1 "exactly."
say

numeric digits 48
say "1/7 =" 1/7

Figure 23. ACCURATE EXEC

Chapter 4. Expressions 73

Reading 3

The sample program results in the display of:

accurate
The largest signed number that can be held
in a S/370 register is 2147483647 exactly.

1/7 = 0.142857142857142857142857142857142857142857142857
Ready;

To check the current setting of the NUMERIC DIGITS instruction use the
DIGITS() function. For example, if no setting was specified for NUMBERIC
DIGITS:

DIGITS ()

would return "9" since the default setting for NUMERIC DIGITS is nine significant
digits.

The SIGN() Function
You can determine whether a number is positive, negative, or zero by using the
SIGN() function.

First the number inside the parentheses is rounded according to the current
NUMERIC DIGITS setting. If this number is < 0, = 0, or > 0, the value returned
by the SIGN() function is -1, 0, 1, respectively.

For example:

say sign(1/7)

Rounding and Truncation

/* says '1' */

Each arithmetical operation is carried out in such a way that no errors are
introduced, except during final rounding.

For example:

numeric digits 3
say 100.3 + 100.3 /* gives 200.6, which is rounded */

/* to '201' */
For a complete description of rounding, see in your VMjSP System Product
Interpreter Reference.

When your program performs a series of arithmetical operations, you may
inadvertently introduce additional errors. Look at the fourth item in INVOICE
EXEC on page 69. The customer appears to have been overcharged by $1.67! The
price was $400 a dozen. FORMAT() has rounded this to 33.33 each. But Total
Price was not rounded until after it had been multiplied by 500.

For rounding numbers, use FORMAT() at the point in your calculations where you
want rounding to occur. For rounding down, use TRUNC().

74 VM/SP System Product Interpreter User's Guide

TTRUNC EXEC

/* An example of rounding. */
qty.1 = 500; unitprice.1 = 400/12
qty.2 = 500; unitprice.2 = 200/12

say
say IIQuantity Unit price Total price Remarks II
say copies(II-II,58)
do item = 1 to 2

end

unitprice = FORMAT(unitprice.item,9,2)
say format(qty.item,6,0),

format(unitprice,7,2),
format(qty.item * unitprice,10,2),

Rounding conventionallyll

unitprice = TRUNC(unitprice.item,2)
say format(qty.item,6,0),

format(unitprice,7,2),
format(qty.item * unitprice,10,2),

Rounding down ll

When run, the following is displayed:

ttrunc

Quantity Unit price Total price Remarks

500
500
500
500

Ready;

Did You Understand That?

33.33
33.33
16.67
16.66

1. In this program

EXPONENT EXEC

16665.00
16665.00
8335.00
8330.00

Rounding conventionally
Rounding down
Rounding conventionally
Rounding down

/* Example of a negative exponent */
if 2 ** -3 = 1/(2**3) then say IITrue ll
else say IIFalse ll

a. What is displayed on the screen?
b. Are the parentheses in this expression really necessary?

Reading 3

Chapter 4. Expressions 75

Reading 3

2. What value will be computed for the expression:

say 9 ** (1/2)

Answers:

1.

a. True
b. No. The ** operator has a higher priority than the / operator, so the

interpreter would evaluate the expression in the same way if the parentheses
were removed.

2. Syntax error! The ** operator must be followed by a whole number (or an
expression which, when evaluated, gives a whole number).

In mathematics, 'x ** (1/2)' means 'the square root of x'. There is an example
of a SQRT() function in "A Square Root Function" on page 56.

Reading 3 continues in "Text" on page 78.

76 VM/SP System Product Interpreter User's Guide

Reading 1

Groups of Instructions
Reading 1

This whole section, "Groups of Instructions," is covered in Reading 1.

We are interrupting our discussion of expressions to explain how instructions can be
grouped together.

Instructions can be grouped together using:

DO

END

instructionl
instruction2
instruction3

If the keyword DO is in a clause by itself, the list of instructions is executed once (no
loop is implied).

The DO instruction and the END keyword make the whole group into a single
instruction, which can be used after a THEN or ELSE keyword.

IF sun = shining
THEN

DO
say "Get up! II

say "Get out! II

say "Meet the sun half way! II

END

In this example, if sun = shining, all three SAY instructions will be executed. But
if sun -,= shi ni ng, none of them will.

We shall be using DO in this way in the sections that follow.

Reading 1 continues in "Text" on page 78.

Chapter 4. Expressions 77

Reading 1

Text

Reading 1

In this section:

immediately following, describes:

• How to concatenate

• How to use the SUBSTR(), LENGTH(), COPIES(), and LEFT()
built-in functions for string manipulation.

Reading 2 on page 82, describes:

• How to use a subroutine to simplify tabulation

• How to search for a string of characters using the POSe) and
WORDPOS() functions.

• How to display lines from your own program using SOURCELINE().

Reading 3 on page 90, describes:

Concatenation

• How to use the OVERLA Y() function.

Reading 1

To concatenate two terms means to join them together to make a string. The
concatenate operators are:

II (two vertical bars)

(blank)

abuttal

Here are some examples:

say "slow" I I "coach"
say "slow" "coach"
/* And */
adjective = "slow"
say adjective"coach"

say adjective "coach"
say "("adjective")"

concatenate with no blanks in between

concatenate with one blank in between

concatenate with no blank in between (as long as the two
terms can be recognized separately).

/* says 'slowcoach'
/* says 'sl ow coach '

*/
*/

/* says 'slowcoach', This is */
/* an example of an abuttal. */
/* says 'sl ow coach ' */
/* says '(slow)' */

The SUBSTR() Function
The value of any REXX variable is a string of characters. To select a part of a
string, use the SUBSTR() function. SUBSTR is an abbreviation for substring. The
first three arguments are:

1. The string from which a part will be taken

2. The position of the first character that is to appear in the result (Characters in a
string are numbered 1,2,3, ...)

78 VM/SP System Product Interpreter User's Guide

Reading 1

3. The length of the result.

(For a complete definition, see your VMjSP System Product Interpreter Reference.)

Here is a simple example:

S = IIrevealll
say substr(S,2,3)
say substr(S,3,4)

The LENGTH{) Function

/* says level
/* says Iveal I

*/
*/

To find out the length of a REXX variable, use the LENGTH() function.

S = IIrevealll
say length(S) /* says 16 1

Here is an example that uses these two functions:

say IIEnter a filename ll

*/

pull fn . /* The period ensures that */
/* FN is assigned only one */
/* word. */

if length(fn) > 8
then

do /* A group. See page 77. */

end

fn = substr(fn,1,8)
say liThe filename you entered was too long. II,

fn IIwill be used. 1I

The COPIES() Function
To produce a number of copies of a string, use the COPIES() function. The
arguments are:

1. The string to be copied

2. The number of copies required.

F or example:

say COPIES(IIHa 1I,3)! /* says IHa Ha Ha !I */

The LEFT() Function
To obtain a string that is always 1 ength characters long, with stri ng at the left hand
end of it, use the LEFT() function.

LEFT(string,length)

If string is too short, the result will be padded with blanks; if string is too long,
the extra characters will be truncated.

F or example:

say II IIl eft(IILong ll ,6)1I11I
say IIleft(IILongerll,6) II III
say IIleft(IILongest li ,6) 11111

/* says
/* says
/* says

I Long
I Longer I
I Longes I

*/
*/
*/

Chapter 4. Expressions 79

Reading 1

Arranging Your Output in Columns
You can use the LEFT() function to arrange your output in columns:

/* Example: tabulated output
c1 = 14
c2 = 20
ruler = c1 + c2 + 16

*/
/* Width of column 1 */
/* Width of column 2 */
/* Width of ruled line */

say left("First Name l ,c1)Left("Last Name l ,c2)IOccupation"
say copies("-",ruler)
say 1 eft ("Bi 11" ,c1) Left (II Brewer" ,c2) II Innkeeper"
say left(IJan l ,c1)Left(IIStewerll ,c2)ICook"
say 1 eft (" Peter" ,c1) Left ("Gurney" ,c2) II Farmer"
say left(IPeter",c1)Left(IDaveyll,c2)IILaborer"
say left(IDaniel ll ,c1)Left(IWhiddon ll ,c2)"Gamekeeperll
say left(IIHarryll,c1)Left(IIHawkel,c2)IExciseman"
say left(ITomll ,c1)Left(ICobl ey l,c2)"Sailor (retired)1I

Figure 24. TABLE! EXEC

And you can vary the tab settings by changing the values of C1 and C2. The output
looks like this:

table!
First Name

Bi 11
Jan
Peter
Peter
Daniel
Harry
Tom
Ready;

Did You Understand That?
Given that:

Last Name

Brewer
Ste\'!er
Gurney
Davey
Whiddon
Hawke
Cobley

C = "Continent"

l. What is the value of:

a. C "of America"
b. C II "al"
c. C"al"
d. LENGTH("Continent")
e. LENGTH(C)
f. LENGTH("C")
g. Substr(c,1,4)substr(c,7,3)
h. Substr(c, 1 ,2)substr(c,5,2)
i. LEFT("Q",8)"QUERY"

Occupation

Innkeeper
Cook
Farmer
laborer
Gamekeeper
Exciseman
Sailor (retired)

j. LEFT("COPY" ,8)"COPYFILE"

80 VMjSP System Product Interpreter User's Guide

Answers:

1.

a. Continent of America
b. Continental
c. Continental
d. 9
e. 9
f. 1
g. Content
h. Coin

1---+----+----+----1

i. Q
j. COpy

QUERY
COPYFILE

You have just completed Step 9.

Reading 1

(This scale can help you check the number of
blanks in the following answers.)

Reading 1 continues in "Comparisons" on page 93.

Chapter 4. Expressions 81

Reading 2

Using a Subroutine to Simplify Tabulation
Reading 2

To make your main program easier to read, leave formatting of output to a
subroutine. For example, the exec in Figure 25 shows how a subroutine can be used
several times in order to create a table.

F or example:

/* Example: a simpler way to obtain tabulated output */
call tabout IIFirst Name ll , IILast Name ll , 1I0ccupationll
say copies(II-II,50)
call tabout IIBillll, IIBrewer ll , II Innkeeperll
call tabout IIJanll, IIStewer ll , IICookll
call tabout IIPeter ll , IIGurney", II Farmer"
call tabout "Peter", "Davey", II Laborer"
call tabout "Daniel ll , "Whiddon", "Gamekeeper"
call tabout IIHarryll, IIHawke ll , IIExciseman ll
call tabout II Tomll , IICobleyll, "Sailor (retired)1I
exit
/*--*/
/* Subroutine to tabulate the output */
/* ================================= */
/* Input format: CALL TABOUT argl,arg2,arg3 */
/* (number of arguments is not checked) */
/* */
/* Output to screen: argl in Column 1 */
/* arg2 in Column 15 */
/* a rg3 in Column 35 * /
/*--*/
TABOUT:
say left(arg(I),14),

I I
left(arg(2),20),

arg(3)
return

Figure 25. T ABLE2 EXEC

The output will be the same as TABLEI on page 80.

For the CALL instructions in Figure 25, the arguments are separated by commas.
In general, each argument could be an expression.

The expression, arg(1), refers to the first argument passed to the called subroutine.
arg(2) refers to the second argument passed to the called subroutine, and arg(3)
refers to the third argument passed to the called subroutine. For example, in the
TABLE2 EXEC, the first time TAB OUT is called, arg(l) is "First Name," arg(2) is
"Last Name," and arg(3) is "Occupation."

82 VM/SP System Product Interpreter User's Guide

F or example:

/* Example: arguments can be expressions

call tabout "First Name", "Last Name", 1I0ccupation"
say copies(II-",50)

r = II (retired) II
firstname = "Tom ll

nickname = "Uncle"
lastname = IICobley"

*/

call tabout firstname IIC'nicknamel)", lastname, "Sailor" r

exit
/*--*/
/* Subroutine to tabulate the output */

••• (same as TABLE2 EXEC in Figure 25)

Figure 26. T ABLE3 EXEC

When run, the following is displayed:

table3
First Name Last Name

Tom (Uncle) Cobley
Ready;

The POS() Function

Occupation

Sailor (retired)

Reading 2

To find the position of a string in another string, use the POS() function. The first
two arguments are:

1. The needle to be found

2. The haystack to be searched.

For a complete definition, see your VMjSP System Product Interpreter Reference.

Here is a simple example:

S = "reveal"
say pos(leve",S) /* says 121 */
say pos(lrevel",S) /* says 10 1 /* not found */ */
Other useful functions of this type are LASTPOS() and COMP ARE().

Chapter 4. Expressions 83

Reading 2

Example
The next example uses some of the functions that you have just been reading about.

/* VALIDATE FILENAME */
/* This program checks that names conform to a set of */
/* defined standards. The names must have the form: */
/* */
/* namddiii */
/* */
/* where "nam" stands for one of the components (INP, */
/* PRO, or OUT); "dd" are two decimal di gits; and * /
/* "iii" are the author's initials (from one to three */
/* letters). For example, the fifth module that */
/* Joe 810ggs writes for the INPut component would be */
r ~
/* INP05J8 */
r ~

do until good
good = 1
Say "Enter filename"
pull fn .
if length(fn) > 8 then do /* length */

say "Filename must not be more",
"than 8 characters long"

good = 0
end
componentname = substr(fn,1,3) /* component */
select
when componentname = "INP" then nop /* valid names */
when componentname = "PRO" then nop
when componentname = "OUT" then nop
otherwise

say "First three characters must be",
"a valid component name"

good = 0
end

/*continued ••• */

Figure 27 (Part 1 of 2). V ALIDFN EXEC

84 VM!SP System Product Interpreter User's Guide

Words

serial = substr(fn,4,2)
if datatype(serial,whole) & posC'.",serial) = 0
then nop
else do

end

say "Fourth and fifth characters must be numeric"
good = 0

author = substr(fn,6) /* author */
if ~ datatype(author,upper)
then do

end

say "Sixth and remaining characters",
"must be alphabetic"

good = 0

if good = 0 then say "Try again"
end

Figure 27 (Part 2 of 2). V ALIDFN EXEC

Reading 2

In REXX, a word is defined as a string of characters delimited by blanks. To
process words, rather than characters, use any of the following REXX functions:

DELWORD
FIND
SUBWORD
WORD
WORDINDEX
WORD LENGTH
WORDPOS
WORDS.

The following description highlights the WORDPOS function; all functions are
described fully in your VMjSP System Product Interpreter Reference.

(Also consider the PULL, ARG and PARSE instructions, discussed later on pages
106 through 115).

The WORDPOS(} Function
To find a phrase (of one or more words) in a string, use the WORDPOS() function.

WORDPOS(phase,string[,start])

The arguments are:

1. The phrase to be found.

2. The s t ri ng to be searched.

3. The starting point of the search (must be a positive number). The default is
the first word in the string.

The interpreter searches stri ng for the sequence of word(s), phrase. The result is the
word-number of the first word in stri ng that matches the first word in phrase.
But, if phrase is not found, zero is returned.

Chapter 4. Expressions 85

Reading 2

Providing Help

By default the search starts at the first word in stri ng. By specifying start you can
begin the search for phrase on any word in stri ng.

For example:

/* liThe British are coming! II */
text = II Li sten, my chil dren, and you shall hearll,

1I0f the midnight ride of Paul Revere II
name = IIPaul Revere ll

say WORDPOS(name,text) /* says 113 1 */

say WORDPOS(lI my children ll , text) /* says 10 1, because the */
/* Word in TEXT is */
/* Ichildren,1 */
/* (Notice the comma) */

Figure 28. REVERE EXEC

You may have noticed that CMS commands and REXX instructions are provided
with a HELP command, so that if you forget how to use them you can always get a
definition displayed on the screen.

If you are writing programs that other people will use, it will help your users if you
do the same. You can either write a separate HELP file for your program or, more
informally, you can provide information from within your program file.

Here is a program that provides its own HELP, using the SOURCELINE()
function to simplify the job of displaying whole lines. SOURCELINE(n) returns the
nth line of the source file. If n is omitted, SOURCELINE() returns the line number
of the final line in the source file.

86 VMjSP System Product Interpreter User's Guide

/*
This program processes the input file to give ...

Correct format is:

MYPROG filename filetype [filemode]

Function performed is:
Rhubarb, rhubarb, rhubarb.
*/
say "Enter fileid of file to be processed II
pull fn ft fm
if fn = ? I fn = 1111 I ft = 1111

then do
/* Display lines until comment-end delimiter alone */
line = 2
do while sourceline(line) -.= "*/"

say sourceline(line)
line = line + 1

end
exit

end
/*--*/
/* Main program starts here. */
/*--*/
say "This is the program"

Figure 29. MYPROG EXEC

Reading 2

Note: Notice that the comment delimiters must be on a separate line in order for
the exec to work properly.

Did You Understand That?
1. Write a subroutine to display data on the screen in the following format:

• The first argument occupies columns 1 to 20. The text is left justified.

• The second argument is an amount of dollars and cents (or pounds and
pence, or francs and centimes, or marks and pfennigs) with the units
position of the cents in column 34.

• The third argument occupies columns 37 to 80.

• As a further refinement, extend your program so that, when the third
argument is too long to fit onto one line, it can be extended into columns 37
to 80 of as many lines as necessary.

Chapter 4. Expressions 87

Reading 2

Answers:

1. Here is the answer to the fourth item, with some test cases.

4MAT EXEC

/* Example: a subroutine for formatting text, and a */
/* main routine for testing it. */

call formatter IIwhole number ll , 12, IIAn easy case ll
ca 11 formatter lIexpress i on II ,2000/6, IIRounded Upll
call formatter lIabcdefghijklmnopqrstuvwxyzll"

12345678888"
IIPrecision of this number is thatll,
IIspecified by NUMERIC DIGITS II

call formatter IISmall number ll , 1/201"
IIAfter rounding, this number isll,

less than .005 11
exit
/*--*/
/* Subroutine to format data and display it. */
/* (For specification, see page 87) */
/*--*/
FORMATTER:
len = 80 - 37 + 1

parse arg name, value, remark

/* length of */
/* remark field */

do j = 1 while length(remark) > len /* slice REMARK */
remark.j = substr(remark,1,len)
remark = substr(remark,len+1)

end
remark.j = remark
say left(name,20),

II format(value,11,2,0),
II IIremark.1

do line = 2 to j
say copies(1I 11,36)1 Iremark.line

end
return

/* last slice */
/* say first line */

/* say others */

Note: Notice the double commas in two of the CALL statements in the 4MAT
EXEC. The first comma indicates that the clause is extended to the next line. The
second comma indicates the end of the argument.

88 VMjSP System Product Interpreter User's Guide

Reading 2

When this program is run, this is what is displayed:

4mat
whole number 12.00
expression 333.33
abcdefghijklmnopqrst12345678900.00

Small number 0.00

Ready;

You have just completed Step 29.

An easy case
Rounded up
Precision of this number is that specified b
y NUMERIC DIGITS
After rounding, this number is

less than .005

Reading 2 continues in "Comparisons" on page 93.

Chapter 4. Expressions 89

Reading 3

The OVERLA Y() Function
Reading 3

To overlay one string onto another string, use:

QVERLAY(new,target,position,length)

The arguments are:

• The string to be overlayed

• The target onto which it is to be overlayed

• The position in the target where overlaying is to start

• The number of bytes to be overlayed.

For example:

say overl ay (" abc ", "123456" ,3,2) /* says I 12ab56 I * /
(For a complete definition, see your VMjSP System Product Interpreter Reference.)

Here is a useful example.

/* This program will help you understand how */
/* comparisons are made. The characters typed in by */
/* the user will be sorted into ascending order. */

say "Please key in all the characters you would",
"like to have sorted."

parse pull S /* Do not translate */
/* to uppercase. */

do until swap = 0
swap = 0

do p = 1 to (length(S) - 1)
c1 = substr(S,p,l)

end
end
say

c2 = substr(S,p+1,1)
if c1 > c2 then do

end

S = overlay(c21Ic1,S,p,2)
swap = 1

/* If out of order, */
/* swap them. */
/* Remember the swap */

say "Here are the same characters,",
"arranged in ascending order:"

say
say S

Figure 30. ORDCHARS EXEC

This is not the fastest way of sorting things, but it is one of the simplest.

90 VM/SP System Product Interpreter User's Guide

Reading 3

The WORDS() and WORD() Functions
A word is a string of characters, delimited by blanks. To obtain the number of
words in a string, use the WORDS() function.

For example:

Necessity = lithe mother of invention. 1I

say words(necessity) /* says 141 */
To obtain a particular word from a string, use the WORD() function. The
arguments are:

• The string

• The number of the word to be extracted from it.

For example:

Necessity = lithe mother of invention. 1I

say word(necessity,2) /* says Imother l */
This next example demonstrates how the WORD and WORDS functions can be
used to search for a word (in this case, a filetype) that matches one of a given list of
words.

/* This exec helps you select files to be edited by */
/* the XEDIT editor. Use the command */
/* */
/* XE filename [filetype [filemode]] [(options] */
/* */
/* You need not specify a filetype. If you do not, */
/* XE will search for a file in the following order: */
/* */
/* filename SCRIPT on any filemode */
/* filename EXEC on any filemode */
/* filename PLIOPT on any filemode */
/* filename DOC on any filemode */
/* filename LISTING on any filemode */
/* */
/* If none of these can be found, it will select */
/* */
/* filename SCRIPT A */
/* */
/* However, if you do specify a filetype, XEDIT will */
/~ use the filetype that you have specified on the */
/* command line. */
/* */
/* When the file has been chosen, XEDIT will be called */
/* and any options that you have specified on the */
/* XE command lin~ will be passed to XEDIT */

/* continued . */

Figure 31 (Part 1 of 2). XE EXEC

Chapter 4. Expressions 91

Reading 3

types = "SCRI PT EXEC PLIOPT DOC LISTING"
/*-~--*/
/* check arguments *1
/*-- --*1
arg filename filetype filemode "(" options

if filename = 1111 I filename = "?"
then do

1* Coding note:
1* see page 113
1* Help needed

do line = 1 while substr(sourceline(line),1,2)
say sourceline(line)

end
exit

end

"/*"

*1
*1
*1

1*--*1
/* compute filetype *1
/*-- --*1
if fil etype = 1111 then do

end

do p = 1 to words(types)
filetype = word(types,p)
"SET CMSTYPE HT"
"STATE" fil ename fi 1 etype
rcs = rc
"SET CMSTYPE RT"
select

/* does file exist? */

when rcs = 28 then nap 1* no *1
when rcs = 0 then leave p 1* yes *1

1* Coding note: *1
1* see page 196 *1

otherwise
say "Unexpected return cade" rcs,

"from STATE command in XE EXEC"
exit rcs

end 1* select *1
end p
if rcs = 28 1* not found yet *1
then filetype = SCRIPT

1*--*1
1* call xedit *1
1*--*1
"XEDIT" filename filetype filemode "(OPTIONS"
exit rc

Figure 31 (Part 2 of 2). XE EXEC

Reading 3 continues in "Comparisons" on page 93.

92 VM/SP System Product Interpreter User's Guide

Reading 1

Comparisons
In this section:

Reading 1 immediately following, describes:

• Comparing numbers

• Comparing character strings.

Reading 2 on page 95, describes:

• Finding the first character that does not match

• Comparing data without regard to case

• Recognizing abbreviations.

Reading 3 on page 97, describes:

General

Numbers

Characters

• Exact comparisons

• Fuzzy arithmetical comparisons.

Reading 1

Comparisons are performed using the operators;

> Greater than
Equal to

< Less than.

These characters can also be combined with each other and with the not character
(-,). (For full details, see your VM/SP System Product Interpreter Reference.)

If both the terms being compared are numbers, comparison is numeric, rather than
character by character.

The value of 5 > 3 is 1 /* true */
The ·value of 2.0 = 002 is 1 /* true * /
The value of 3E2 < 299 is 0 /* false * /.

If either of the terms is not a number, leading and trailing blanks are ignored; the
shorter string is padded on the right with blanks; and then the strings are compared
from left to right, character by character. If the strings are not equal, the first pair
of characters that do not match are used to determine the result.

Chapter 4. Expressions 93

Reading 1

For example, if" Chalk" is compared with "Cheese "

pad

•
111cI+1+11
H f -----+·Ia .. e so Chalk" cheesel

IcI+H+11

A character is "less than" another character if it comes earlier in the sequence:

(lowest)
blank
special characters
a ... z
A ... Z
0 ... 9
(highest).

There may be exceptions to this for some of the special characters, depending on the
features of the keyboard you are using. You can use the program ORDCHARS
EXEC on page 90 to discover the sequence of characters for your keyboard.

Did You Understand That?
1. What is the value of each of the following expressions?

a. "3" > "five"
b. "Kilogram" > "kilogram"
c. "a" > "#"
d. "q" > "?"
e. "9a" > "9"
f. "?" > " "

Answers:

1. All are "1" (true).

You have just completed Step 10.

Reading 1 continues in "Translation" on page 99.

94 VM/SP System Product Interpreter User's Guide

The COMPARE() Function
Reading 2

Reading 2

To compare two strings and find the position of the first character in the first string
that does not match the second string, use the COMPARE() function.

COMPARE(stringl,string2)

For example:

/* Given that */
a = "Berry"; b = "Beryl"; c = II Bert"; d = "BEST"

The value of compare(a, b) is 4.
The value of compare(a,c) is 1.
The value of compare(a,d) IS 2.

In that last example, notice that "e" is not the same as "E". When you would like
your comparisons to be independent of case, translate everything to uppercase first.
Of course, if you obtained your data using ARG or PULL, this will have been done
for you. If not, you can use the UPPER instruction to change one or more variables
to uppercase.

/* Given that */
a = "Berry"; b = "Beryl"; c = II Bert"; d = "BEST"
UPPER abc d

The value of compare(a,d) is 3.

The ABBREV() Function
In a friendly environment, the user might expect to be allowed to use abbreviations,
just as you can with eMS commands. To specify what abbreviations you will
accept, use the ABBREV() function.

ABBREV(information,info[,length])

The arguments are:

1. The keyword in full.

2. The user's answer.

3. The minimum number of characters in the user's answer. If you leave this
argument out, the minimum number is assumed to be the same as the actual
length of the user's answer. A null answer is also accepted.

The result is '1' (true) if info (the user's answer) is at least length characters long
and all the characters of info match the corresponding characters
of information (the keyword in full).

Chapter 4. Expressions 95

Reading 2

For example,

/* Example: accepting abbreviations */

do until yes -.= "YES" /* until VES is set */
say II ••• answer Ves or No"
pull answer
select

when abbrev(IVES",answer,l)

then yes = 1
when abbrev(INO",answer)

then yes = 0
otherwise say "Try again!"

end /* select */
end

/* accepts
/* 'VE ' or

/* accepts
/* or I I

if yes then say "I take that to mean YES"
else say "I take that to mean NOli

Figure 32. YEP EXEC

Did You Understand That?
Given that:

Q2 = "COPY"
Q3 = "PRT"

1. What is the value of:

a. COMPARE(SUBSTR(Q2,3),Q3)
b. ABBREV("COPYFILE" ,Q2,4)
c. ABBREV("PRINT" ,Q3,2).

Answers:

1.

a. 2
b. 1

'VES', */
IV I */

I NO I, I N I */
*/

c. 0 ("PRT" is not equal to the first 3 letters of "PRINT".)

You have just completed Step 30.

Reading 2 continues in "Translation" on page 99.

96 VM/SP System Product Interpreter User's Guide

Exact Comparisons
Reading 3

Reading 3

Strict comparison operators carry out simple character-by-character comparisons,
with no padding of either of the strings. They do not try to perform numeric
comparisons since they test for an exact match between the two strings.

To find out whether two strings are exactly equal (that is, identical) use the" = ="

operator.

Given that:

The value of
The value of
The value of
The value of

x = y
x \= y, x ~= y or x /= y
x == y
x \== y, x ~== y or x /== y

is
is
is
is

1 /* true */
o /* false */
o /* false */
1 /* true */

You can also find out whether two strings are exactly greater than or exactly less
than using the » and « operators. (Remember, a character is "less than"
another character if it comes earlier in the sequence. Refer to page 94)

For example:

The value of
The value of
The value of
The value of

"cookies" » "carrots"
"$10" » "nine"
"steak" « "fish"
II steak" « "steak"

is 1 /* true */
is 0 /* false */
is 0 /* false */
is 1 /* true */

In the last example, II steak II is strictly less than II steak II since the blank is lower in
the sequence of characters.

The strict comparison operators would be especially useful if you were interested in
leading and trailing blanks, nonsignificant zeroes and so on.

For more information on exact comparison operators, see your VM/SP System
Product Interpreter Reference

Fuzzy Arithmetical Comparisons
There are times when an accurate comparison is inconvenient, for instance:

/* Example: no approximation here */

say 1 + 1/3
say 1 + 1/3 + 1/3 + 1/3
say 1 + 1/3 + 1/3 + 1/3 = 2

Figure 33. NO FUZZ EXEC

/* says 11.33333333 1 */
/* says 11.99999999 1 */
/* says 10 1 (false) */

To make comparisons less accurate than ordinary REXX arithmetic, use the
NUMERIC FUZZ instruction. (For full details, see your VM/SP System Product
Interpreter Reference.)

Chapter 4. Expressions 97

Reading 3

For example:

/* Example: allowing approximation */
say 1 + 1/3 + 1/3 + 1/3 = 2 /* says 10 1 (false) */
numeric fuzz 1
say 1 + 1/3 + 1/3 + 1/3 = 2 /* says 111 (true) */

Figure 34. FUZZ EXEC

To check the current setting of the NUMERIC FUZZ instruction use the ()
function. For example:

FUZZ()

will return '0' by default. This means that 0 digits will be ignored during a
comparison operation.

Reading 3 continues in "Translation" on page 99.

98 VM/SP System Product Interpreter User's Guide

Translation

Reading 1

Reading 1

In System/370, each character or byte contains 8 bits. There are two possible values
for each bit, and so there are 2**8 or 256 possible characters in the character set.

If you need to translate from one character set to another, or if you are dealing with
output from programs that work in binary or hexadecimal, you should study this
section.

In this section:

skips this section.

• Continue Reading 1 in Chapter 5, "Conversations" on page 105.

Reading 2 on page 100, describes:

• Conversion between Character, Hexadecimal and Decimal.

Reading 3 on page 103, describes:

• Translation from one character set to another

• The VERIFY() function.

Chapter 4. Expressions 99

Reading 2

Hexadecimal

Conversion

Input Function

OF C2D
OF C2X
FIF5 D2C
FIF5 D2X

FIC6 X2C
FIC6 X2D

Reading 2

In System/370, each character occupies 8 bits. Each bit can have one of two values,
'0' or 'I'. For example, the character "+" has the value:

0100 1110 (binary)

But, because binary is difficult for humans to read, we might write it as a pair of
hexadecimal digits. There are 16 possible hex digits. They are:

0123456789ABCDEF

So the hexadecimal equivalent of "+" is "4E".

Finally, we could also write the value of the character "+" as its decimal equivalent,
which is 78.

The interpreter will accept strings expressed in either character or hexadecimal form.
To indicate that a string is expressed in hex, write the letter "X" next to the closing
quote.

The value of "+" is the same as the value of '4E'X.

To convert from one form to another, you can use various built-in functions.

2 means "translate to"

C means "characters"

X means "hexadecimal"

D means "decimal"

The value of C2X("+") is '4E'
The value of X2C(4E) is '+'
The value of C2D("+") is '78'
The value of D2C(78) is '+'
The value of D2X(78) is '4E'
The value of X2D(4E) is '78'

All these functions will accept strings more than I-byte long.

To understand the conversion functions, lets look at the inputs to and the outputs
from the functions in hexadecimal. The following chart shows example hexadecimal
input, the conversion function performed, and the resultant hexadecimal output.
Also shown is another way to remember what the function does.

Result What the function does

FIF5 binary in, EBCDIC out (represents a decimal value)
FOC6 binary in, EBCDIC out (represents a hexadecimal value)
OF EBCDIC representing decimal in, binary out
C6 EBCDIC representing decimal in, EBCDIC representing

hexadecimal out
IF EBCDIC representing hexadecimal in, binary out
F3FI EBCDIC representing hexadecimal in, EBCDIC representing

decimal out

100 VM/SP System Product Interpreter User's Guide

/

Reading 2

The inputs to C2D and C2X can be any hexadecimal value. Hexadecimal input is
typically referred to as "binary" or "character" input. The hexadecimal value does
not represent an EBCDIC string. Usually the input to C2D or C2X is generated by
another program or a function, such as the REXX DIAG function, that returns a
"binary" value.

You would use C2X or C2D to convert this "binary" value into a form that could be
displayed on an EBCDIC terminal, or that could be used in other REXX
instructions.

In the first function, C2D, the input is hexadecimal I OF I. C2D tells REXX to
convert the input into a decimal value and then to convert that decimal value into its
EBCDIC representation. Hexadecimal 'OF' has a decimal value of 15. The
EBCDIC representation of 15 is IF 1 F5 I. If you were to display hexadecimal
I FIF5 1 on an EBCDIC terminal, what you would see is the character string "15."
Try executing:

say c2d('8F ' x)

You should see a "IS" displayed on your terminal. Notice that we use the notation
I OF I X for input. This is because there is not a key on most EBCDIC terminals that
ca uses a hexadecimal 10 F I to be genera ted.

For the C2X function, the input is, again, hexadecimal I OF I. C2X tells REXX to
convert the hexadecimal value into an EBCDIC form. The hexadecimal value is
I OF I. The EBCDIC representation of that value is I FOC6 1

• If you were to display
hexadecimal I FOC6 I on an EBCDIC terminal, you would see the character string
"OF." Try executing:

say C2X('8F'X)

You should see "OF" on your terminal.

The input to the next two functions, D2C and D2X must be the EBCDIC
representation of a decimal value. The output of D2C is "binary," and hence may
be nondisplayable, while the output of D2X is an EBCDIC representation of a
hexadecimal value.

In the preceding chart, the input to D2C is hexadecimal I FIF5 1
• By definition, the

input to the D2C function is an EBCDIC string that represents some decimal value.
D2C tells REXX to take the decimal value represented by the input and convert it to
a hexadecimal value. The EBCDIC string I FIF5 1 represents a decimal value of 15.
Hexadecimal notation for decimal 15 is I OF I. Try executing both of these
instructions:

say d2c (I fl f5 I x)
say d2c(15)

They both mean the same thing. In the first instruction, we supply the hexadecimal
string as input. In the second, we type the characters, which are internally
represented as hexadecimal I FIF5 1

•

Both instructions attempt to display hexadecimal I OF I on your terminal. On most
EBCDIC terminals, I OF I does not mean anything. You will either see a blank or,
on some models, you might see an unusual character.

Chapter 4. Expressions 101

Reading 2

In the chart on page 100, hexadecimal I FIF5 1 is also the input to D2X. Again, by
definition, the input to D2X must be an EBCDIC string that represents some
decimal value. D2X tells REXX to convert the EBCDIC representation of the
decimal value into the EBCDIC representation of its equivalent hexadecimal value.
EBCDIC I FIF5 1 represents a decimal value of IS, which is the hexadecimal value F.
The EBCDIC representation of the character "F" is I C6 1. Try:

say d2x (I fl f5 I x)
say d2x(15)

Again, the instructions mean the same thing. Both attempt to display hexadecimal
I C6 1 on your terminal. In EBCDIC, I C6 1 represents the character "F," which is
what you will see on your terminal.

The last two functions, X2C and X2D, accept as input EBCDIC strings that
represent hexadecimal values. The output of X2C is binary, while the output of
X2D is an EBCDIC string that represents a decimal value.

The input to both functions is hexadecimal I FIC6 1. X2C tells REXX to convert the
EBCDIC string into its "binary" hexadecimal form. The EBCDIC string I FIC6 1

represents the hexadecimal value I I Fl. The output, then, is I I Fl. Try executing:

say x2c (I flc6 1 x)
say x2c(lF)

Both instructions mean the same thing. By now you can probably predict what will
happen: because the output is "binary," either a blank or an odd character will be
displayed.

X2D tells REXX to convert the EBCDIC input of a hexadecimal value into the
EBCDIC representation of its decimal equivalent. The EBCDIC string I FI C6 1

represents a hexadecimal value of IF. Decimal notation for hexadecimal 'IF' is 31.
The EBCDIC representation of 1311 is I F3FI'. Try:

say x2d('flc6 I x)
say x2d(1F)

Both instructions mean the same thing. The output is EBCDIC, so you will see the
characters "31" displayed on your terminal.

Reading 2 continues in Chapter 5, "Conversations" on page 105.

102 VM/SP System Product Interpreter User's Guide

Character Sets

Reading 3

Reading 3

To translate from one character set to another (for example, to translate data before
sending it from an EBCDIC computer to an ASCII printer) use the
TRANSLA TE() function.

Another use would be for changing punctuation, as in this example.

/* Example: using the TRANSLATE() function to change */
/* unwanted characters to BLANK */

text = IlListen, my children, and you shall hear ll ,
1I0f the midnight ride of Paul Revere II

say wordpos(lImy childrenll,text) /* says 10 1, because the */
/* word in TEXT is */
/* I children, I */

/*---*/
/* Say whether Imy children l can be found in TEXT */
/*---*/

/* remove punctuation */
nopunct = translate(text,1I II,II.;:!,?II)

say sign(wordpos(lImy children ll ,nopunct))
/* says 111

say sign(wordpos(lIkidsll,nopunct))
/* says 10 1

Figure 35. NOPUNCT EXEC

*/

*/

To help make up strings to put in translation tables use the XRANGE() function.
For more information on this function see to the VM/SP System Product Interpreter
Reference.

The VERIFV() Function
To find out whether a string contains only characters of a of a given character set,
use the VERIFY() function.

VERIFY(string,reference)

returns the position of the first character in stri ng that is not also in reference. If
all the characters in stri ng are also in reference, zero is returned.

Chapter 4. Expressions 103

Reading 3

F or example:

/* Example: testing that all input characters are valid */

say "Please enter the serial number"
say "(eight digits, no imbedded blanks or periods)"

pull serial rest
if verify(serial ,.10123456789") = 0,
& length(serial) = 8,
& rest = ""

then say "Accepted"
else say "Invalid serial number. Please start again"

Figure 36. DIGITS EXEC

Reading 3 continues in Chapter 5, "Conversations" on page 105.

104 VM/SP System Product Interpreter User's Guide

Reading 1

Chapter 5. Conversations

Reading 1

In this chapter:

immediately following, describes:

• How to write lines to the user's screen using the SAY instruction

• How to obtain data from the user's keyboard using the PULL instruction

• How to translate values to uppercase using the UPPER instruction

• How to parse this data; that is, to separate it into words and to assign each
word or group of words to a different REXX variable.

Reading 2 on page 112, describes:

• How to obtain data from the command line using the PARSE instruction

• How to parse 'options' using the ARG instruction

• How to parse variables and expressions.

Reading 3 on page 117, describes:

• How to parse using pa tterns.

The SAY Instruction
Reading 1

To display data on your screen use:

SAY expression

The expression is computed and the result is displayed as a new line on the screen.
F or example, the instruction:

say 3 * 4 "= twelve"

causes this to be displayed:

12 = twelve

If you want to display a clause that occupies more than one line in your program,
use a comma at the end of a line to indicate that the expression continues on the
next line. For example, the instruction:

say "What can't be done today, will have to be put off",
"until tomorrow."

Chapter 5. Conversations 105

Reading 1

causes this to be displayed:

What can't be done today. will have to be put off until tomorrow.

Notice that the continuation comma is replaced by a blank when the expression is
displayed. (Remember that the continuation comma cannot be enclosed in quotes or
the interpreter will consider it part of the string.)

The PULL Instruction
Having asked the user a question using SAY, you can collect the answer using
PULL. When the instruction

PULL symbol

is executed the program pauses; VM READ appears on the bottom right of the user's
screen; the user should enter some data on the command line and press ENTER.
Whatever the user enters is translated to uppercase and then assigned to the
variable SYMBOL.

To get the data just as it is, without having the lowercase letters translated to
uppercase, use:

PARSE PULL symbol

This example uses both PULL and PARSE PULL.

/* Another conversation */
say "He 11 o! What I s your name?"
parse pull name
say "Say," name", are you going to the party?"
pull answer
if answer = "YES"
then say "Good. See you there!"

Figure 37. CHITCHAT EXEC

The user's name will be repeated exactly as it was entered. But ANSWER will be
translated to uppercase. This ensures that, whether the user replies "yes", or "Yes",
or "YES", the same action is taken.

The UPPER Instruction
To translate the values of one or more variables to uppercase, use the UPPER
instruction.

UPPER name! name2 •••

For example, this might have been used in WHATDA Y EXEC, on page 62, to let
the user reply in mixed case.

106 VM/SP System Product Interpreter User's Guide

/* Example: to make the user say what day of the */
/* week it is today. The user's reply may be in */
/* mixed case. */
today = date{weekday)
upper today /* uppercase */
do until reply = ,today

say "What day of the week is it?"
pull reply /* uppercase */
if reply ~= today
then say "No, it is" date{weekday)

end
say "Correct!"

Figure 38. WHATDAY2 EXEC

Did You Understand That?
1. The following program asks a question:

RIDDLE EXEC

/* Simple question (?) */
say "Mary, Mary, quite contrary"
say "How many letters in that?"
pull ans
if ans = length{that)
then say "Quite right!"
else say "Oh!"

What happens if the user replies:

a. 21
b.4
c. Four

2. What would be displayed by:

NOAH EXEC

/* Example: expressions that continue for more */
/* than one line. */
x = 3
say "x =" x
say
say "Ham,",

"Shem",
"and Japheth"

say "Silly"
"Bi lly"

Reading 1

Chapter 5. Conversations 107

Reading 1

3. Use XEDIT to create a file called PULLIN EXEC containing the following
program, then try to run the program!

PULLIN EXEC

/* Example: appending input, using PULL,
/* to a REXX variable
text = 1111

do until input = "QUIT"
say "Text so far is:"
say text
say "Would you like to add to that?",

II If so, type your message. II,
II If not, type QUIT. II

pull input
text = textl linput

end

*/
*/

Did it work? If not, study the error messages and make sure you copied
everything correctly.

a. Notice that:

• When you run the exec, everything you type in gets changed to
uppercase (capital) letters.

• You are not given any blanks between the old TEXT and the new
INPUT.

b. Now alter pull input to parse pull input. Alter the concatenate operator
"II" to a single blank and try again. Notice that:

Answers:

• Your input does not get changed to uppercase.

• You are always given one blank between the old TEXT and the new
INPUT.

• You cannot get out of the program by typing "quit". But you can get
out by typing "QUIT".

1. What appears on the screen is:

a.Oh!
b. Quite right!
c.Oh!

Each of these are, of course, followed by "Ready;".

108 VM/SP System Product Interpreter User's Guide

Parsing Words

2. What appears on the screen is:

noan
x = 3

Ham. Shem and Japheth
Si 11y

10 *-* "Billy"
+++ RC(-3) +++

Ready;

Reading 1

As there is no comma after Si lly, Bi lly is treated as a command. If no such
command exists CMS sets the return code to minus three. So the interpreter
displays the line that caused the error and the return code.

You have just completed Step 11.

PULL can also fetch each word, into a different variable. In the following example,
FIRST, SECOND, THIRD and REST have been chosen as the names of variables.

say "Please enter three or more words:"
pull first second third rest

The user's screen: Please enter three or more words:

command line = = > three wise men on camels
VM READ

l l l
.,.

~
first second third rest

As usual, the program pauses and the user can type something on the command line.
When the user presses ENTER, the program continues.

The variable FIRST is given the value "THREE."
The variable SECOND is given the value "WISE."
The variable THIRD is given the value "MEN."
The variable REST is given the value" ON CAMELS."

In general, each variable gets a word (without blanks) and the last variable gets the
rest of the input, if any (with blanks). If there are more variables than words, the
extra variables are assigned the null value.

Chapter 5. Conversations 109

Reading 1

To make sure that the user types in the right number of words, provide one extra
variable and test that it is empty. Also, test the variable that holds the last word the
user is expected to enter. By testing both variables for a null value, you can be sure
that each of your variables contains exactly one word.

/* Example: getting the number of words that you want */

good = e
do until good

end

say "Please enter exactly three words"
pull first second third rest
select

end

when third = "" then say "Not enough words"
when rest ...,= "" then say "Too many words"
otherwise good = 1

c·

Figure 39. FUSSY EXEC

The Period as a Placeholder
The symbol"." (a period by itself) may not be used as a name but it may be used as
a place-holder with the PULL instruction. For example,

pull . . 1 astname .

would discard the first two words, assign the third word into LASTNAME, and
discard the remainder of the input.

Did You Understand That?
1. What will be displayed on the screen when this program is run?

PULLING EXEC

/* Example: the PULL instruction */
Say "Where did Jack and Jill go?"
parse pull one two three four five six.

/* User replies ITo fetch a pail of water l */
say one two six
say
Say "Wi 11 you buy me a diamond ri ng?"
pull reply .

/* User replies IYes, if I can afford itl */
say reply

110 VM/SP System Product Interpreter User's Guide

,/

Reading 1

2. Write a program that asks the user for his name and greets him by his first
name. Your program should ignore any other names.

Answers:

1. What appears on the screen is:

pull; ng
Where did Jack and Jill go?
To fetch a pail of water
To fetch water

Will you buy me a diamond ring?
Yes, if I can afford it
YES,
Ready;

2. A possible answer would be:

HOWDY EXEC

/* Example: selecting a single word */
say "Howdy! Say, what's your name?"

pull reply . /* The period causes second */
/* and subsequent words to */
/* be ignored */

say "Pleased to meet you," reply

You have just completed Step 12.

Reading 1 continues in Chapter 6, "Commands" on page 119.

Chapter 5. Conversations 111

Reading 2

GeHing Data from the Command Line
Reading 2

When you want to run your exec, type its filename on the command line. This can
be followed by more data, called arguments.

To obtain the data that the user entered on the command line when starting your
program, use the ARG instruction. ARG will parse the arguments in the same way
that PULL parses data from the keyboard, except that the first word entered on the
command line (the name of the exec) is not parsed. (The ARG instruction gives the
same results as the PARSE UPPER ARG instruction.)

If there is a program called MIX EXEC, the command shown on the following
command line will start it. For example,

/* Example: this program starts by assigning the words */
/* from the command line to REXX variables */

arg first second third rest
say first second third rest

Figure 40. MIX EXEC

The user's screen:

command line = = > mix fresh green salad and olives

1 l 1
first second third

When the ARG instruction is executed:

The variable FIRST is given the value "FRESH."
The variable SECOND is given the value "GREEN."
The variable THIRD is given the value "SALAD."
The variable REST is given the value" AND OLIVES."

112 VM/SP System Product Interpreter User's Guide

VM READ
..

~
rest

Mixed Case

Reading 2

To obtain the data that the user entered on the command line when starting your
program, without translating alphabetic characters in the data to uppercase, use the
PARSE ARG instruction.

Recognizing Options

Literal Patterns

In CMS, the ordinary arguments of a command are separated from the options by a
left parenthesis. Optionally you can mark the end of the options with a right
parenthesis if you wish.

F or example,

SCRI PT myfil e (T\~OPASS CONTINUE)

tells SCRIPT to process MYFILE SCRIPT with the options TWOPASS and
CONTINUE.

Your REXX program can handle data from the command line in a 'similar way, by
using literal patterns.

To split up the data being parsed, use literal patterns. If your PARSE instruction
specifies a string (that is, one or more characters enclosed in quotes) the data being
parsed will be split at the point where the string is found. In this next example, the
first pattern is "(" and the second pattern is ")". The ARG instruction is used to
parse the data from the command line. If there is a program called TAKE EXEC,
the command shown on the following command line will start it.

/* Example: recognizing options */

arg drink type shelf "(" optl opt2 opt3 ")" rest
say drink type shelf optl opt2 opt3 rest

Figure 41. TAKE EXEC

Chapter 5. Conversations 113

Reading 2

The user's screen:

command line = = > take coffee beans (fresh roasted
VM READ

1 1 1 1
drink type opt1 opt2

When the ARG instruction is executed:

• The words in front of the first pattern will be parsed in the usual way, into
DRINK, TYPE, and SHELF. For this example, SHELF will be set to null.

• The words between the first pattern and the second pattern (if there is one) will
be parsed in the usual way, into OPTI, OPT2, and OPT3. For this example,
OPT3 will be set to null.

• If there is a second pattern, the words that followed it will be parsed into REST.
For this example, REST will be set to null.

This technique of parsing using literal patterns can be used with any of the parsing
instructions.

Parsing Variables and Expressions
As well as parsing replies from the user and the data from the command line, you
can parse variables and expressions.

PARSE VAR symbol argl arg2 arg3 •.•
PARSE VALUE expression WITH argl arg2 arg3

114 VM/SP System Product Interpreter User's Guide

F or example:

/* Examples: parsing variables and expressions */

phrase = "Three blind mice II

PARSE VAR phrase number adjective noun
say number /* says 'Three ' */
say adjective /* says 'blind ' */
say noun /* says I mi ce I * /

PARSE VALUE copies(phrase,2) WITH . a . b • c
say b a c /* says 'Three blind mice ' */

/* and, finally, a very useful trick for taking the
/* first word away from a sentence

*/
*/

PARSE VAR phrase first phrase
say first
say phrase

Figure 42. PARSING EXEC

Did You Understand That?
1.

/* says 'Three ' */
/* says 'blind mice ' */

Reading 2

a. Modify MYPROG EXEC on page 87 to use the ARG instruction.

b. Make a further modification to test for a CONTINUE option. Allow any
abbreviation of COntinue that is two or more letters long. Test for invalid
options.

Chapter 5. Conversations 115

Reading 2

Answers:

1. A possible solution is:

MYPROG2 EXEC

/*
This program processes the input file to give •••

Correct format is:

MYPROG2 filename filetype [filemode] [(COntinue [)]]

Function performed is:
Rhubarb, rhubarb, rhubarb.
*/
arg fn ft fm "("option")" rest
if fn = ? I fn = 1111 I ft = 1111,

I option ~= 1111 & ~ abbrev(CONTINUE,option,2),
I rest ~= 1111

then do

end

do line = 2 by Lwhile sourceline(line) ~= "*/"
say sourceline(line)

end
exit

/*--*/
/* Main program starts here. */
/*--*/
say "This is the program"
if abbrev(CONTINUE,option,2)
then say "If an error is detected, processing",

"will continue"

When run, the following is displayed:

myprog2
This program processes the input file to give

Correct format is:

MYPROG2 filename filetype [filemode] [(COntinue [)]]

Function performed is:
Rhubarb. rhubarb, rhubarb.
Ready;

You have just completed Step 31.

Reading 2 continues in Chapter 6, "Commands" on page 119.

116 VM/SP System Product Interpreter User's Guide

Parsing Using Patterns
Reading 3

Reading 3

The idea of parsing using patterns is fully explained in your VMjSP System Product
Interpreter Reference, however, we will briefly describe parsing here.

Data can be parsed using patterns. A pattern is part of the template of a PULL,
ARG or PARSE instruction and is recognized if it is:

• In quotes, like "(" and ")" in the MYPROG2 EXEC on page 116

• In parentheses (meaning that it is the name of a variable)

• An unsigned number (meaning that parsing is to continue at the specified
character position)

• A signed number (meaning that parsing is to continue at the specified character
position, relative to the first character of the last match).

Here is a useful function, in which the second PARSE instruction uses a variable as
a pattern.

/* Function: CHANGE(string,old,new) */
/* */
/* Like XEDIT's "C/old/new/1 *" */
/* */
/* Changes all occurrences of "old" in "string" */
/* to "new". If "old" == 1111, then "new" is prefixed */
/* to "string". */

parse arg string, old, new
if old=="" then return new\\string

out=""
do while pos(old,string)~=0

end

parse var string prepart (old) string
out=out\ \prepart\ \new

return out\ \string

Figure 43. CHANGE EXEC

Reading 3 continues in Chapter 6, "Commands" on page 119.

Chapter 5. Conversations 117

Reading 3

118 VM/SP System Product Interpreter User's Guide

Reading 1

Chapter 6. Commands

In this chapter:

Reading 1 immediately following, describes:

• How to issue commands to CMS and CP from within your exec

• What are return codes from commands

• The REXX special variable, RC.

Reading 2 on page 126, describes:

• How to debug commands

• How to write a common routine to handle nonzero return codes

• How to access messages from a repository file

• How to suppress messages issued by CMS commands.

Reading 3 on page 138, describes:

• How to suppress messages issued by CP commands

• How to obtain a reply from a CP command

• Using the COMMAND environment as an alternative environment for
issuing CMS and CP commands.

Issuing Commands to CMS and CP
Reading 1

The interpreter can operate in a number of environments (for example, CMS or
XEDIT). The way the interpreter handles commands depends on the environment it
is operating in. For the moment, to keep things simple, let us assume that your
program was started by typing its name on the CMS command line. In this case,
your program is in the CMS environment.

Clauses That Become Commands
Any clause in your program that the interpreter does not recognize as:

an instruction,
an assignment,
a label, or
a null clause

will be evaluated and passed to the appropriate environment for execution. For
example, if the environment is CMS, CMS and CP commands will be handled in the
same way as if they had been entered on the CMS command line.

/* Example: a CMS command in a REXX program
IIERASE OLDSTUFF SCRIPT All

*/

Chapter 6. Commands 119

Reading 1

The clause that has been recognized as a command is treated as an expression. The
interpreter will compute the value of the expression in the usual way, and will pass
the result to the environment. The expression is always evaluated first.

This rule is extremely useful, but you must be careful how you use REXX operators
and special characters. Also, look out for use of duplicate names.

• In this example, the value of a variable is substituted in an expression, before the
expression is passed to eMS.

/* Example: to erase a number of SCRIPT files. */

do until fn = ""

end

say "Enter filename of file to be erased"
say II (To return to CMS, enter a null line)1I
pull fn

if fn -,= 1111 then

/* The user replies Imyfile l
, */

/* FN = MYFILE */

IIERASE FN SCRIPT" /* This clause is treated as */
/* an expression. The result,*/
/* which (in this example) is */
/* IERASE MYFILE SCRIPT 1 */
/* is passed to CMS */

Figure 44. ERASER EXEC

• If you want to use a REXX operator or special character as an ordinary
character, then you must put it in quotes. This is because expressions are
evaluated before they are passed to an environment. Therefore, any part of the
expression that is not to be evaluated should be written in quotes.

For example:

/* Example: to erase all the files on filemode A */
/* that have a filetype of LIST */
IIERASE * L1ST JI

Figure 45. ELIST EXEC

/* This clause is treated as */
/* an expression. The result */
/* IERASE * LIST 1 */
/* is passed to CMS */

In Figure 45, if the asterisk was not in quotes, the interpreter would attempt to
multiply ERASE by L1sn

Note: Remember to put quotes around all operators and parentheses unless
already enclosed in quotes. Either of the following examples is correct:

IICOPyll MYFILE SCRIPT A IJ=II BACKUP A II (REPLACE IJ

IICOPY MYFILE SCRIPT A = BACKUP A (REPLACE IJ

120 VM/SP System Product Interpreter User's Guide

Reading 1

• Another difficulty is the use of duplicate names. In Figure 46, the programmer
has chosen A as the name of a variable. In the COPYFILE instruction, A is
used as the filemode and must be enclosed in quotes; otherwise, the current
value of A would be substituted.

/* Example: to save copies of a number of SCRIPT */
/* files. Each copy is given the same filename */
/* as the original, and a filetype of BACKUP. */
do until a = 1111

say IIEnter filename of file to be backed Upll
say II (To return to CMS, enter a null 1 i ne) II
pull a

/* The user replies 'myfile ' , */
/* A = 'MYFILE ' */

if a ...,= 1111 then
IICOPyll a IISCRIPT A = BACKUP A (REp ll

/* This clause is treated as an
/* expression. The result, which in
/* this example is

*/
*/
*/

/* COpy MYFILE SCRIPT A = BACKUP A
/* is passed to CMS

(REP */
*/

end

Figure 46. BACKUP EXEC

This example leads on to a more general question.

When to Use Quotes
The syntax for REXX expressions is very flexible. If a symbol, that is not the name
of a variable, is written without quotes, no error is signalled. The value used in the
result is the symbol itself, translated to uppercase. This makes it easier to write
simple programs in REXX than in some other languages. However, you must be
careful never to use a symbol to stand for itself, when a variable of the same name
exists. (In Figure 46, A is the name of a variable, so it must not be used as the
literal name of a filemode without putting quotes around it.)

In large programs, or programs that are intended to be very reliable, you can
voluntarily adopt the rule that every symbol that is not the name of a variable
should be in quotes. In the example BACKUP EXEC in Figure 46, the COPYFILE
command would be written:

IICOPyll a IISCRIPT A = BACKUP A (REp ll

/* Here, everything is in quotes except the symbol la ' , */
/* which is the name of a variable. */

Chapter 6. Commands 121

Reading 1

CP Commands

Summary

You can write CP commands in a REXX program. Our example is a program that
lets you use files that are on another user's disk. The CP command LINK makes
another user's disk available to you.

LINK [TO] userid hisdisk mydisk [mode] [password]

where:

userid

hisdisk

is the user ID of the person the disk belongs to.

is the 3-digit number of his disk.

mydisk is a 3-digit number that the disk will have on your system.
Choose any number that you do not already use.

mode, password may be required in some installations but are not used in the
example found in Figure 47.

(For an introduction to this subject, see "LINK" in the VMjSP CMS Primer. For
full details, see the VMjSP CP General User Command Reference.)

After LINKing to the other user's disk, you can use the CMS command ACCESS to
make the files on his disk accessible to you.

ACCESS mydisk filemode

For mydi sk, use the same 3-digit number as you used in the link command.
For fil emode, choose any letter that you do not already use.

Now for the example, suppose someone in your support organization has a number
of useful programs that you would like to use. You know that:

• His user ID is HELPDESK.
• The programs are on his disk 196.
• You will not need to use a disk password.

Here is a REXX program that you can use to make everything on his disk available
to you.

/* For linking to Disk 196 belonging to HELPDESK */

II LINK HELPDESK 196 200"
"ACCESS 200 8"

Figure 47. LINKHELP EXEC

/* a CP command
/* a CMS command

To run the program, type in the command LINKHELP.

*/
*/

A clause that is an expression by itself will be evaluated, and the result will be passed
to the specified environment. By default the result will be passed to CMS; if the
result is not known to CMS, it will be passed to CPo

You have just completed Step 13.

122 VM/SP System Product Interpreter User's Guide

Return Codes

Reading 1

When you write a CMS or CP command in your exec, you should consider what
would happen if the command failed to execute correctly. For example, a
COPYFILE command might fail because the user's disk was full. After such a
failure, you should at least EXIT from your program. You may also want to issue a
warning message to the user.

Here is how you discover such a failure. When commands have finished executing,
they always provide a return code. A return code of zero nearly always means "all's
well." Any other number usually means that something is wrong. You can see these
codes on your screen when you enter CMS commands from the command line, as in
these examples:

copy profile exec a profile backup a

Ready;

link fred 591 591

FRED 591 not linked; not in CP directory
Ready(00053);

access 591 b

DMSACCl13S B (591) not attached
Ready(00100);

copy profile exec a = = b (for luck

Invalid parameter LUCK in the FOR option Field.
Ready(00024);

erase junk exec

File JUNK EXEC not found.
Ready(00028);

Chapter 6. Commands 123

Reading 1

The first command worked correctly so the return code was zero and CMS displayed
the "Ready" message:

Ready;

on the screen. (When the return code is zero, CMS does not display the return
code.) All the other commands failed so CMS displayed their return codes as part
of the "Ready" message. For instance, the return code from the LINK command
was 53.

Ready(00053);

Now that you understand how CMS handles commands and return codes, let us see
how the interpreter handles them.

Any command that would be valid on the CMS command line is valid as a clause in
a REXX program. The interpreter treats the clause like any other expression,
substituting the values of variables, and so on. The interpreter takes the result and
passes it to CMS or CPo (The rules are the same as for commands on the CMS
command line; for details, see "The CMS Environment" in your VM/SP System
Product Interpreter Reference.)

When the interpreter has issued a command and CMS or CP has finished executing
it, the interpreter gets the return code and stores it in the REXX special variable RC.
In your program, you should test this variable to see what happened when the
command was executed.

For example:

"COPY PROFILE EXEC A PROFILE BACKUP A"
if rc -,= e
then do

end

say "Unexpected return cade" rc "from COPYFILE cormnand"
exit

The EXIT instruction causes your exec to finish. The interpreter gives control back
to CMS. This will be explained later in "The EXIT Instruction" on page 200.

To find out what return codes can be expected from a CMS command, look up the
command in the VM/SP CMS Command Reference. Return codes are listed in the
last paragraph of the description of each command.

To find out what return codes can be expected from CP commands, look in the
VM/SP System Messages Cross-Reference. The commands themselves are described
in the the VM/SP CP General User Command Reference.

Special Variables
RC is one of the REXX special variables. The other special variables are RESULT
and SIGL. You may use RC, RESULT, and SIGL as the names of your own
variables, but you should always remember that any of them may be assigned new
values by the interpreter. For example, the special variable RC is assigned a new

124 VM/SP System Product Interpreter User's Guide

Reading 1

value when a command has been executed. (For full details, see your VMjSP
System Product Interpreter Reference.)

Did You Understand That?
1. A program is required that will create a file called "PR ALL". In this file there

is to be a list of all the files on filemode A (a directory in your file space or a
RjW minidisk) whose names begin with "PR".

a. Study the CMS command LISTFILE. You will find it in the VMjSP CMS
Command Reference, or you can get a short description displayed on your
screen by typing in "HELP LISTFILE". Use the LISTFILE command to
display the required list of files on your screen.

b. Study the EXEC option of the LISTFILE command. Write a REXX
program that issues a command to generate the required file.

c. At the end of the description of LISTFILE in the VMjSP CMS Command
Reference, you will find a list of possible return codes. Modify your
program to handle all possible errors.

d. Add to your program a command that RENAMEs the file that has been
created as "PR ALL A".

e. Test your program by running it twice.

Answers:

1.

LISTPR EXEC

/* Lists all the files on filemode A whose filenames */
/* begin with "PR". The result is written into the */
/* file PR ALL A. Any previous version of that file */
/* is overwritten. */
/* */
/* CMS EXEC A is used as a work file, then destroyed. */

"LISTFILE PR* * A (EXEC"
if rc ~= 0 then do

say "Unexpected return code" rc "from LISTFILE command"
exit

end

"ERASE PR ALL A"
"RENAME CMS EXEC A PR ALL A"
if rc ~= 0
then say "Unexpected return code" rc "from RENAME command"

You have just completed Step 14.

Reading 1· continues in Chapter 7, "File Processing" on page 143.

Chapter 6. Commands 125

Reading 2

Debugging Individual Commands
Reading 2

If you cannot understand what is happening when you enter a command, it is
possible that your program did not issue the command correctly. To be sure about
this, trace the command that is behaving mysteriously.

mad = "Delirious"

trace r
"SCRIPT MAD"
trace n

Debugging Execs That Contain Commands
As you know, a program that issues a command should always test the return code
immediately afterwards to see if all is well. One way of doing this is to write:

if rc -,= e then ••••

Also, for programs that are still being tested (or redesigned, or debugged), use the
TRACE Errors instruction

TRACE E

at the beginning of your exec. A nonzero return code will cause the interpreter to
display the line number of the command in your program, the command, and the
return code.

Making a Common Routine for Handling Return Codes
The third way, suitable for programs that can be used by other people, is to use the
SIGNAL ON ERROR instruction. This instruction switches on a detector in the
interpreter that tests the return code from every command. If a nonzero return code
is detected, the usual sequence of clauses is abandoned. Instead, the interpreter
searches through your program for the label

ERROR:

Processing continues from there. (This label must be the symbol ERROR followed by a
colon.) The line number of the command is stored in the REXX special variable
SIGL.

126 VMjSP System Product Interpreter User's Guide

Reading 2

You can use SIGL to tell the user which command caused normal processing to be
interrupted:

signal on error
COpy .•.

II RENAME II
exit /* End of main program */
/*--*/
/* Error handler: common exit for nonzero return codes*/
/*--*/
ERROR:
say IIUnexpected Return Code ll rc IIfrom command: 1I

say II II source1ine(sig1)
say lIat 1ine ll sig111.11

The EXIT instruction is put there to stop the main program from running on into
the error handling routine.

To switch off the detector, use the instruction:

SIGNAL OFF ERROR

If you know that one of your commands can give a nonzero return code, you must
switch off for that one command. For example, if you do not know whether OLD
LISTING exists, but need to erase it if it does, this series of instructions will do.

signal off error
IIERASE II old listing a
signal on error

Getting Messages from a Repository File
You can store message texts in a single file that is separate from your program. The
CMS XMITMSG command lets you then access and display one of these messages
from a REXX EXEC. See the VMjSP CMS Command Reference for a complete
description of XMITMSG.

Chapter 6. Commands 127

Reading 2

When using XMITMSG in a REXX EXEC, variables are enclosed in quotes. For
example:

/* In these examples we use message number 3,
/* which has one substitution.

*/
*/

buffer = 'bufferit'

XMITMSG 003 BUFFER

'XMITMSG 003 BUFFER '

'XMITMSG 003 "BUFFER" '

'XMITMSG 003 8002 1

'XMITMSG 003 "8002"1

~nd

/* Variable with the name of buffer. */

/* This will not work because the */
/* variable buffer resolves to */
/* bufferit, which is itself not a */
/* variable, so no substitution */
/* takes place. */

/* This example will work because */
/* the variable buffer is in quotes */
/* and gets passed to XMITMSG. */
/* bufferit is substituted. */
/* continued ••• */

/* Here we substitute the literal
/* string BUFFER, which will be
/* taken as the substitution.

*/
*/
*/

/* This example shows the use of a */
/* dictionary item, (8002). */
/* The value of 8002 as a dictionary */
/* item is the literal string BUFFER.*/

/* This example is another example */
/* of passing literal strings. */
/* In this case, the number 8002 */
/* gets passed as a substitution */
/* instead of resolving to BUFFER */
/* because 8002 is in quotes. */

Note: This is not a complete program and can not be executed by itself.

How to Suppress Messages Issued by CMS Commands
To suppress all output (except Severe and Terminating messages from CMS
commands), use the Halt Typing command.

SET Cf.1STYPE HT

To resume normal output, use the Resume Typing command.

SET Cf.1STYPE RT

Be sure that your program executes SET CMSTYPE RT before you need to execute
a SAY instruction. Also, remember that SET CMSTYPE RT will change the special
variable RC. If the old value will be needed, it must be saved. In this example, the

128 VM/SP System Product Interpreter User's Guide

Reading 2

return code we are interested in is saved in RCSAVE (RC is overlayed by the second
SET command).

IISET CMSTYPE HT"
"STATE" fn ft fm
rcsave = rc
"SET CMSTYPE RT"

if rcsave = 28
then

A Useful Subroutine

/* Does the file exist? */

/* (Assigns another value to RC) */

/* Is the return code from the */
/* STATE command 28 (not found)? */

All of the preceding code makes your program rather difficult to read. So it would
be better to use a subroutine, like this:

signal on error

ca 11 qui et "STATE II fn ft fm
if RESULT = 28 then

/~ Does the file exist? */
/* Set by subroutine's */
/* RETURN instruction */

exit /* End of main program */
/*--*/
/* QUIET * /
/* ===== * /
/* Subroutine to issue a CMS command without displaying */
/* a message on the screen and without jumping to ERROR */
/* if the return code is nonzero. */
/* */
/* The first argument is the command to be executed. */
/* On returning to the caller, the REXX special */
/* variable RESULT contains the return code from */
/* this command. */
/*--*/
QUIET:
signal off error
"SET CMSTYPE HT"
"arg(l) /* Coding note: the null string */

/* prevents ARG from being */
/* treated as an instruction. */

rcsave = rc
"SET CMSTYPE RT"
return rcsave

/*--*/
/* Error handler: common exit for nonzero return codes */
/*--*/
ERROR:
say "Unexpected Return Code" rc "from command:"
say " source1 ine(sig1)
say "at line" sig1"."

Note: This is not a complete program and can not be executed by itself.

Chapter 6. Commands 129

Reading 2

Did You Understand That?
1. Review the following program. Make sure that you understand what it is

supposed to do. Will it always work correctly?

/* This program requests the user to supply a list of
/* files (filename filetype only) and replies, for
/* each file:

*/
*/
*/
/ /

/*
/*
/*

* whether it is on the user's directory or minidisk */
accessed as filemode A. */

/* * whether it is on the directory or minidisk
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/* accessed as filemode L.
/*
/* * if there is a copy on each filemode, whether
/* these copies are the same.
/*
/* To end the list, the user returns a null line.
/*
/* Command format: PAIRS

if arg() ~= 0 /* help needed */
then do n = 1 until substr(line,1,2) ~= "/*"

line = sourceline(n)
say line

end
else do forever

do until ft ~= "II & rest = II" /* Get fn ft */
say II Enter fi 1 ename and fil etype II ,

lI(or null line to exit) II
pull fn ft rest
if fn = "" then exit

end
home = II"
call quiet "STATE II fn ft IIA" /* Compute Home, a */

if result = 0 then home = "A" /* list of filemodes*/
call quiet IISTATE II fn ft L /* where the file */
if result=0 then home = home ilL" /* can be found */
select

when words(home) = 0
then say IINo files found ll

when words(home) = 1
then say "Only one file found (on filemode IIhome")"
otherwise
call quiet compare fn ft A fn ft L

/* continued */

Figure 48 (Part 1 of 2). PAIRS EXEC

130 VM/SP System Product Interpreter U serf s Guide

select

end
end

end

when result = 0
then say "Same fil e found on both fil emodes II ,

"(A and L)"
when result = 4, /* files do not match */
I result = 32, /* files have different */

/* formats or LRECLs */
result = 40 /* files not the same length */

then say "Files on filemodes A and L",
"are not the same"

otherwise say "Unexpected return code" result,
"from COMPARE command"

exit /* end of main program */
/*--*/
/* Subroutine to issue a CMS command WITHOUT displaying */
/* a message on the screen and WITHOUT jumping to ERROR */
/* if the return code is nonzero. */
/* */
/* The first argument is the command to be executed. */
/* On returning to the caller, RESULT contains the */
/* return code from this command. */
/*--*/
QUIET:
signal off error
"SET CMSTYPE HT"
IIl1 arg (l)
rcsave = rc
"SET CMSTYPE RT"
return rcsave

Figure 48 (Part 2 of 2). PAIRS EXEC

Answers:

1. The program will run correctly.

You have just completed Step 32.

USing the Program Stack

Reading 2

The program stack is used to pass data to certain CMS commands, or to obtain data
from them.

• We begin with a careful description of the program stack; this will make it easier
for you to use later.

• This is followed by a 'cookbook' list of things to do when using the program
stack in a REXX program.

• Next comes an example of a command putting data into the program stack.
Some commands that can do this are:

EXECIO

IDENTIFY

to read files from a directory or minidisk and to execute CP
commands and execute CP commands
to obtain the nodeid, rscsid, and so on

Chapter 6. Commands 131

Reading 2

Definitions

LISTDIR
LISTFILE
NAMEFIND
QUERY
RECEIVE
RDR

to find out about directories
to find out about files
to obtain information from a NAMES file
to find out about your CMS virtual machine
to read in files and notes
to find out what files are in your reader.

• And finally, an example of a command that takes data from the program stack.
Some commands that can do this are:

EXECIO
COPYFILE
FORMAT
SORT

to write files to a directory or minidisk
to copy files (using the SPECS option)
to format a minidisk
to sort a file.

In computer science, a stack is a list of items that you can work with from only one
end, the top. You can PUSH an item onto the stack or PULL an item off from it.
The item you PULL off will always be the last item you (or somebody else) PUSHed
on.

PUSH,

I 6

5

4

1

,PULL

I

A queue, on the other hand, is a list of items which you can work with from both
ends. You can QUEUE (or add) items only at the back and you can PULL items
only off at the front.

QUEUE~I I ... I I I I~PULL

The CMS program stack can be used both as a stack and as a queue.

132 VM/SP System Product Interpreter User's Guide

Buffers

Reading 2

PUSH

QUEUE~I I ::: I I I I~PULL
You can use the program stack as a kind of mailbox. CMS commands, for example,
can put data in and a REXX instruction can retrieve it for you. Or, a REXX
instruction can put data in and a CMS command can retrieve it.

In fact, the program stack can be accessed using REXX instructions, CMS
commands, CMS EXEC control words, and Assembler language macros. But we
shall only discuss the first two of these. The table gives you the keywords used in
the different languages.

REXX instruction QUEUE PUSH PULL

CMS command option (STACK (STACK Depends
FIFO LIFO on
(FIFO (LIFO command

CMS EXEC or EXEC 2 &STACK &STACK &READ
control word FIFO LIFO

CMSSTACK CMSSTACK LINERD
FIFO LIFO

Assembler macro (none) (none) RDTERM

where:

FIFO means First In, First Out (as in a queue).

LIFO means Last In, First Out (as in a stack).

A buffer is a general term for a part of the computer's memory that is used for input
or output.

You can build extensions to the program stack, which are called buffers. Usually
there is only one buffer in the program stack.

• You can create new buffers using the MAKEBUF command.

• QUEUE, PUSH and their equivalents put data into the last buffer created.

• PULL and its equivalents remove data from the last buffer created until it is
empty, then from the previous buffer until it is empty, and so on.

• When the program stack is completely empty, data is taken from the terminal
input buffer.

This is what you might call "a stack of buffers." The entire stack is called the console
stack.

Chapter6. Commands 133

Reading 2

QUEUE Buffer n

Buffer 0

Terminal

PUSH

I---T"""""""I~PULL

Program
Stack

Terminal
Input
Buffer

Console
Stack

You may have noticed the terminal input buffer already. The buffer stores data
from the CMS command line when you type ahead and press enter while a previous
command is still executing.

• If there is nothing in the program stack or the terminal input buffer when a
PULL or its equivalent is executed, the program stops, the words "VM READ"
appear in the bottom right-hand comer of your screen, and nothing happens
until you press the Enter key, a Program Function key, or certain other keys,
depending on the type of terminal you are using.

How to Use the Program Stack
Using the program stack is not quite as complicated as it looks, as you will see when
you read the examples which follow.) The safest way to use the program stack is
this:

1. Begin the stack-processing portion of your program with the CMS command
MAKEBUF. This will set up your own buffer in the program stack.

134 VM/SP System Product Interpreter User's Guide

Reading 2

2. Find out how many entries arc already on the stack, use the QUEUED()
function. For example:

theirs = queued()

3. Use the QUEUE instruction or an equivalent eMS command to put data onto
the program stack.

4. Use the PULL instruction or an equivalent eMS command to take data off the
stack. If you issue too many PULL instructions the user might see, on the
bottom right of the screen:

VM READ

To continue, the user must press ENTER.

Note: Lines originating from SFS and non-SFS sources might contain different
information. For example, the LISTFILE command displays information about
the contents of a specific filemode, which can be an accessed minidisk or an
accessed directory. If the filemode is a minidisk, the command displays lines
that describe files. However, if the filemode is a directory, the command might
also display information about subdirectories. A line that describes a
subdirectory is different from the line that describes a file.

5. It is important to avoid removing items that do not belong to you from the
program stack. Remove the items one at a time, first checking that what you
are about to remove is yours. For example:

do while queued() > theirs /* THEIRS are not ours */
pull /* (see the preceding

information) */

end

6. Be sure that you have removed all your data from the program stack before you
return to eMS. You can use the eMS command DROPBUF to do this.

Each line left in the program stack, when your REXX program has finished and
eMS gets control, will be treated by eMS as a command. Perhaps the user will
see the message:

Unknown CP/CMS command

Or, perhaps something quite unexpected will happen!

This can be simplified slightly. If you are sure that your program will never try to
remove items belonging to other programs from the program stack, you can omit
steps 2 and 5.

You might also leave out the commands MAKEBUF and DROPBUF, and nothing
would appear to go wrong. But you could have trouble one day, if your exec is
called by a program that also uses the program stack. So it is best to use
MAKEBUF and DROPBUF in all programs that use the program stack.

Chapter 6. Commands 135

Reading 2

Example: A eMS Command That Puts Data onto the Program Stack
This simple program issues a warning message when your primary minidisk, filemode
A, is more than 80% full. This means that it's time to get a bigger minidisk, or else
erase some files you'll never need again! You could call this program from your
PROFILE EXEC.

Note: This program does not work for a directory. Although the QUERY DISK
command provides information about accessed minidisks and accessed directories,
the line that describes a directory is different from the line that describes a minidisk.

Before reading this example, try out the CMS command

QUERY DISK A

Notice that two lines appear on the screen. In a REXX program, to make QUERY
put these two lines into the program stack, use the STACK option of the QUERY
command.

/* Gives a warning when the user's primary minidisk */
/* (filemode A) is more than eighty per cent full */
"MAKEBUF"
"QUERY DISK A (STACK"
if rc = 0 then do

end

pull /* Discard header */
parse pull "-" percentage.
if percentage> 80
then say "Warning: Your disk
is" percentage"% full"

else say "NEARFULL EXEC: unexpected return code" rc
"DROPBUF"

Figure 49. NEARFULL EXEC

136 VM/SP System Product Interpreter User's Guide

Reading 2

Example: A CMS Command That Requires Data from the Program Stack
There are several CMS commands that ask questions and require answers from the
user. To provide these answers from your program, use the program stack.

Here is an example. The file PR ALL A is to be copied into a new file, PR
EVERYONE A, moving all the data seven positions to the left.

1 8 80

A line in PR ALL A

blanks

1 74 ~ S8

A line in PR EVERYONE A I I

The COPYFILE command with the SPECS option asks the user to specify the fields
in each line of the input file that are to appear in each line of the output file, and
where in that line they are to appear. For details, see "COPYFILE" in the VMjSP
CMS Command Reference:

In this program, the answer is provided by the interpreter; it is QUEUEd onto the
program stack before COPYFILE command is issued.

/* This program will copy the file "PR ALL A" into a */
/* new file "PR EVERYONE A", shifting the data in */
/* columns 8 through 80 into column 1, discarding */
/* columns 1 through 7 and making columns 74 through */
/* 80 blank. If the file "PR EVERYONE A" already */
/* exists it wili be overwritten. */

"MAKEBUF II

queue "8-80 1"
"COPY PR ALL A PR EVERYONE A (SPECS NOPROMPT REP"
if rc ~= 0 then say "Unexpected return code",

rc "from COPYFILE command."
"DROPBUF"

Figure 50. LEFT7 EXEC

You have just completed Step 33.

Reading 2 continues in Chapter 7, "File Processing" on page 143.

Chapter 6. Commands 137

Reading 3

CP Commands

How to Suppress Messages Issued by CP Commands
Reading 3

To issue a command to CP, suppressing messages and obtaining only the return
code, use the CMS command EXECIO:

"EXECIO 0 CP (STRING" cp command

where:

EXECIO

o
CP

STRING

is a CMS command.

specifies that no data is to be returned.

is a keyword of EXECIO, specifying that a command is to be passed to
CPo

is an option of EXECIO, specifying that the remainder of the command
line is the CP command to be issued. When used in a REXX program,
this can be followed by an expression.

Our example is about a temporary minidisk. If you need to compile something and
there is not enough room for the output files in your file space or on your primary
minidisk (filemode A), you can obtain a temporary minidisk from CP and put the
output files on that minidisk. (Do not put files containing original information on
temporary minidisks; if VM has a failure, your files could be lost forever.) To
obtain a temporary minidisk, with the physical characteristics of an IBM 3330, a
virtual address (cuu) of 192 and an extent of 5 cylinders, you could type on the CMS
command line:

define t3330 as 192 cyl 5

CP would reply:

DASD 192 DEFINED 0005 CYL

DASD means Direct Access Storage Device; in this case, the reply refers to a virtual
DASD (a minidisk).

To issue the same command from a REXX program, suppressing the reply, use:

"EXECIO 0 CP (STRING DEFINE T3330 AS 192 CYL 5"
if rc -,= 0 •..

How to Obtain the Reply from a CP Command
To obtain the reply from a CP command in a REXX program, use:

"EXECIO * CP (STRING" cp_command

Here, the asterisk (*) specifies that all the lines in the reply are to be returned.
EXEC 10 will put the reply in the program stack. There will be as many items in the
program stack as there would have been lines on the screen.

Before reading this next example, tryout the command:

Q DASD

138 VM/SP System Product Interpreter User's Guide

Reading 3

CP replies with a list of the minidisks defined for your virtual machine. The TDISK
program in the next example reads this list. It then looks through the list for a vaddr
(virtual address) and a filemode that are not on the list, and which can, therefore, be
used as the vaddr and filemode of a temporary minidisk.

/* This program obtains a temporary minidisk, using */
/* a virtual address (vaddr) and a filemode that are */
/* not already in use. The number of cylinders may */
/* be specified as the first and only argument. The */
/* default is 5. */
/* */
/* If the program was called from the command line and */
/* is successful, the virtual address and filemode are */
/* displayed. Otherwise an error message is displayed. */
/* */
/* If the program was called as a SUBROUTINE (that is, */
/* by a CALL instruction in a REXX program) or as a */
/* REXX function, no messages are displayed. */
/* */
/* If the program is successful, the return code is */
/* zero. If the argument is present and not numeric, */
/* the return code is 16. If all 26 filemodes are in */
/* use, the return code is 27. Otherwise, the return */
/* code is that of the CMS or CP command that prevented */
/* success. */
/*---~--*/
/* Check argument */
/*--*/
if arg() = 0 /* argument supplied? */
then cylinders = 5
else do

arg cylinders.
if ~ datatype(cylinders,whole)
then do /* help needed */

do n = 1 until substr(line,1,2) ~= 11/*11

end

line = sourceline(n)
say line

end
return 16

end

/*--*/
/* How was this program called */
/*--*/
parse source. howcalled • /* See the Reference */

/* manual. */
/*--*/
/* Find unused CUU */
/*--*/

/* continued •.. */

Figure 51 (Part 1 of 3). TDISK EXEC

Chapter 6. Commands 139

Reading 3

"MAKEBUF"
signal on error
theirs = queued()
"EXECIO * CP (STRING Q DASD"
used = 1111

do while queued() > theirs
pull . cuu .
used = used cuu

end
do newcuu = 200 while pos(newcuu,used) ~= 0
end
/*--*/
/* Find unused filemode */
/*--*/
alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
do letter = 1 to 26 until response = "NOT ACCESSED. II

"Q DISK" substr(alphabet,letter,l) "(LIFO" /* PUSH */

pull
end

response /* get last line of last reply */

signal off error; "DROPBUF" /* clear our buffer */
"MAKEBUF"; signal on error
if letter = 27 then do

end

if howca 11 ed = II COMMAND II
then say "All filemodes in use II

return 27

newfm = substr(alphabet,letter,l)

/*--*/
/* Obtain and format minidisk */
/*----------------------------~-------------------------*/
"EXECIO 0 CP (STRING DEFINE T3330 AS" newcuu,

push "TEMP"
push "YES"
"SET CMSTYPE HT"
"FORMAT" newcuu newfm
"SET CMSTYPE RT"
signal off error
"DROPBUF"
exit

"CYL" cylinders

/* continued

Figure 51 (Part 2 of 3). TDISK EXEC

*/

140 VMjSP System Product Interpreter User's Guide

/*--*/ /* Non-zero return codes */
/*--*/
ERROR:
rcsave = rc
"SET CMSTYPE RT"
"DROPBUF"
if howcalled = "COMMAND"
then do

end

say "Unexpected return code" rcsave
say "from command" source1ine(s;gl)
say "at line" sig1

exit rcsave

Figure 51 (Part 3 of 3). TDISK EXEC

The COMMAND Environment

Reading 3

So far, we have said that the interpreter handles CMS and CP commands in exactly
the same way as if they had been entered from the CMS command line. This is
called the eMS environment; it was chosen as the default because it is the one that
most programmers will want to use, most of the time. But there is an alternative
environment, the COMMAND environment, which has some advantages.

You should use the COMMAND environment:

1. To avoid calling a user's exec, which happens to have the same name as a CMS
command. For example, suppose you send a copy of your program to another
user, or put your program in a directory or on a minidisk that other users can
access. Your program contains the clause "sort ... "; you are telling the
interpreter to execute the CMS command SORT.

When this command is executed from your program using the usual CMS search
order, there might be a file called SORT EXEC in the directory or minidisk that
the user has accessed as A. If so, CMS will call the user's exec instead of the
command! As far as you are concerned, the result is unpredictable. But to have
CMS search for a SORT MODULE - CMS commands are stored in files with a
filetype of MODULE - write:

ADDRESS COMMAND SORT 000

And, so long as the SORT MODULE is not on the user's disks, your program
will run as you expect.

2. To suppress messages from certain commands. For example, the commands
ERASE, LISTFILE, RENAME and STATE issue the message "FILE NOT
FOUND" when the specified file is not, found and the command was entered
from the command line or from a REXX program. If you think a person using
your program would find this message confusing, write

ADDRESS COMMAND "STATE" fn ft

(for example) and the message will be suppressed.

To suppress nearly all messages, use SET CMSTYPE HT. (See page 128 for
details.)

Chapter 6. Commands 141

Reading 3

3. To reduce system overhead. This can be important if the user has a large
number of directories or mini disks accessed. Each time your program issues a
command, CMS searches these directories and minidisks for an exec file of that
name before it searches for a MODULE file. (CMS commands are stored in
files with a filetype of MODULE.)

Instead of writing ADDRESS COMMAND in front of each clause, you can write

ADDRESS COMMAND

at the beginning of your program. This has the same effect as if all commands were
prefixed with ADDRESS COMMAND. If you have done this, and you want to
switch back to the CMS environment, use:

ADDRESS CMS

Reading 3 continues in Chapter 7, "File Processing" on page 143.

142 VM/SP System Product Interpreter User's Guide

Reading 1

Chapter 7. File Processing

Reading 1

Files are where you keep your data. You can store files in SFS directories and/or on
minidisks.

In this chapter:

immediately following, describes:

• Writing files using the EXECIO command.

Reading 2 on page 145, describes:

• Reading files using the EXECIO command and the program stack

• The FINIS command

• Using data from an existing file to create a new file

• Precautions to be taken when modifying an existing file.

Reading 3 on page 156, describes:

Writing Files

• Other ways of processing files

• Processing files in the CMS shared file system.

Note: The newer commands refer to the component parts of a file as lines. The
older commands (such as COPYFILE) use the term records. They are the same
thing. In this book we use the term lines.

For details on the EXECIO command, see the VM/SP CMS Command Reference.

Reading 1

To write one line to a file, use the following comm~nd:

"EXECIO 1 DISKW" fname ftype fmode "(STRING" expression

Chapter 7. File Processing 143

Reading 1

where:

EXECIO

1

DISKW

fname

ftype

fmode

STRING

expression

is a CMS command.

is the number of lines to be written. (For simplicity, write one line
at a time.)

is a keyword of EXECIO that specifies "Write to a file" on a
minidisk or in a directory.

is the filename of the file to be written to.

is the filetype of the file to be written to.

is the filemode, a letter specifies the minidisk or directory where the
file is to be written.

is an option of EXECIO, specifying that the remainder of the
command is to be written as a line in the file. When used in a
REXX program, this can be followed by an expression.

is a REXX expression. The result of this expression becomes a line
in the file.

This line is added at the end of the file. If the file does not exist, this line becomes
the first and only line.

Example: An Editor
Our first example is a rather simple editor for adding one or more lines to a file.

/* World's smallest editor */
say "Enter filename and filetype"
pull fn ft .
say "Enter data: as many lines as you like.",

II To finish, press ENTER without entering any data."
do until rc ~= e

parse pull 1 ine

if line = 1111

then exit
/* empty line? */
/* If so, return to CMS */

"EXECIO 1 DISKW" fn ft "A (STRING" line
end
say "Unexpected return code II rc "from EXECIO 1 DISKW"

Figure 52. EDDY EXEC

Notice that EXECIO, like other CMS commands, can indicate errors by giving
nonzero return codes. In Figure 52, the DO UNTIL instruction causes the
interpreter to leave the loop when a nonzero return code is encountered.

You have just completed Step 15.

Reading 1 continues in Chapter 8, "XEDIT" on page 161.

144 VM/SP System Product Interpreter User's Guide

Reading Files

End of File

Reading 2

Reading 2

To read one line of a file from a minidisk or a directory, use:

IIEXECIO 1 DISKRII fname ftype [fmode]

EXECIO puts the line in the program stack at the back of the queue. You can get
the line off the program stack with a PULL instruction.

To avoid clashes with data from other commands, use MAKEBUF to create a
separate buffer that you will use only for transferring file lines. On your way out,
get rid of leftover stacked lines by using the DROPBUF command.

You can also read a line of a file and assign it to a variable. Use:

"EXECIO 1 DISKR" fname ftype [fmode] "(VAR" symbol

EXECIO puts the line from the specified file into the variable symbol. (See the
VM/SP CMS Command Reference for more details on the EXECIO command.)

Usually, the first time you execute EXECIO for a particular file, you get the first
record; the second time, you get the second record; and so on. Nothing special
happens when you read the last record, but the next time, EXECIO responds with a
return code of 2, indicating end of file

Chapter 7. File Processing 145

Reading 2

Example: To Display a File on the Screen

. /* Example: reads and displays a file (like the CMS */
/* command TYPE). Default filemode is "A". */
/* */
/* Command format: MYTYPE filename filetype [filemode] */

arg fn ft fm .
if ft = 1111 then do

end

say "Command format is: MYTYPE fn ft [fm]"
exit

if fm = 1111 then fm = "A"
"MAKEBUF"

do forever

end

"EXECIO 1 DISKR" fn ft fm II (VAR LINP
if rc ~= 0 then leave
say line

if rc ~= 2 /* End of file? */
then say "Unexpected return code" rc,

"from EXECIO 1 DISKR" fn ft fm I (VAR LINE I

"DROPBUF"

Figure 53. MYTYPE EXEC

The FINIS Command
Once you have started reading or writing a file, it is said to be open. CMS
"remembers" which record you have written or read, so that when you ask to
process the next record, CMS can quickly find it.

When you have finished writing or reading a file, you should use the FINIS
command to tell CMS to close it.

FINIS fn ft [fm]

The return code from this command is:

o if the file was open, and the close was successful

6 if the file could not be closed because it was already closed

31 if the close failed on an SFS file. Changes are rolled back.

Here are two reasons why you should use FINIS:

1. After you have closed your file, any other program that attempts to read the file
will have to open it again, and will thus start processing in the usual place. This
removes the risk of the wrong record being processed.

2. When your program writes a file and then calls another program to process it,
the other program may give an error message "File already open." In this case,
you must close your file (using FINIS) after you have written it and before
calling the other program.

146 VM/SP System Product Interpreter User's Guide

Reading 2

Example: A Time Recording Program
Here is a practical example you can use to record the amount of time you and your
colleagues spend at work. There are three separate REXX programs:

CLOCKIN records the time the user arrived today in a file called 'date
CLOCKIN A'.

CLOCKOUT picks up the time the user arrived from 'date CLOCKIN A',
appends the time the user departed, and writes all this as a single
line in the file 'month CLOCKUP A'.

CLOCKUP reads the records in 'month CLOCKUP A' and computes the total
time the user has been present this month.

Further details:

• A user who has executed "CLOCKIN" is considered to be present until
"CLOCKOUT" is executed. If the user executes "CLOCKIN" when already
considered present, a message is displayed.

• A user can "CLOCKIN" and "CLOCKOUT" more than once in a day.

• Midnight is an important time in this system. Users should "CLOCKOUT"
before midnight. If this is not done, "month CLOCKUP A" will have to be
manually updated.

Chapter 7. File Processing 147

Reading 2

/* Part of a suite of programs for time recording. */
/* This program records the current time in the file */
/* "date CLOCKIN A". There is just one line in the */
/* file. It reads: */
/* */
/* dd mon yyyy arrived at hh:mm:ss */
/* */
/* But if this file already exists, a message is issued */
/* instead. The message reads: */
/* */
/* Arrived today at hh:mm:ss */
/* */

parse value date() with day month year
filename = dayl Itranslate(month) I Isubstr(year,3,2)

"SET CMSTYPE HT"
"STATP filename "CLOCKIN A"
rcsaved = rc
"SET CMSTYPE RT"

"MAKEBUF"
signal on error
select

when rcsaved = 28 then do
"EXECIO 1 DISKW" filename "CLOCKIN A (STRING",

date() "arrived at" time()
end
when rcsaved = 0 then do

"EXECIO 1 DISKR" filename "CLOCKIN A"
pull .••.. time
say "Arrived today at" time

end
otherwise
say "Unexpected return code" rcsaved

end
signal off error
"FINIS" filename "CLOCKIN A"
"DROPBUP
exit
/*--*/
/* Error handler: common exit for nonzero return codes */
/*--*/

/continued*/
ERROR:
say "Unexpected Return Code" rc "from convnand:"
say" II sourceline(sigl)
say lIat line" sigl
"DROPBUP

Figure 54. CLOCKIN EXEC

148 VM/SP System Product Interpreter User's Guide

/* Timekeeping program. Processes file created by */
/* CLOCKIN EXEC. */
/* */
/* If the file "date CLOCKIN A" does not exist, the */
/* message "FILE NOT FOUND" is displayed and no other */
/* action is taken. Otherwise, the file is read, the */
/* words * /
/* */
/* departed at hh:mm:ss */
/* */
/* are added, and the line is appended to the file */
/* "month CLOCKUP A". When this has been done, the */
/* file "date CLOCKIN A" is erased. */

parse value date() with day month year
filename = dayl Itranslate(month) I Isubstr(year,3,2)

"STATE" fil ename "CLOCKIN"
if rc ~= 0 /* File not found. STATE command */
then exit rc /* has provided error message */

"MAKEBUF"
signal on error
"EXECIO 1 DISKR" filename "CLOCKIN A"
parse pull 1 ine

"EXECIO 1 DISKW" fil ename "CLOCKOUT A (STRING",
1 i ne "departed at II time ()

"FINIS" filename "CLOCKOUT A"

"COPY" filename "CLOCKOUT A MONTW "CLOCKUP A (APPEND"
"ERASE" filename "CLOCKOUT A"
"ERASE" filename "CLOCKIN A"
say "Operation complete."
signal off error
"DROPBUF"
exit

/*--*/
/* Error return code from CMS command */
/*--*/
ERROR:
say "Unexpected return code" rc "from command at line",

sigl "in CLOCKOUT EXEC."
IIDROPBUP

Figure 55. CLOCKOUT EXEC

Did You Understand That?

Reading 2

1. Copy CLOCKIN and CLOCKOUT to your primary directory or minidisk
(filemode A). Test them to see if they will perform as specified.

2. Arrange that every day, the first time you log on, your arrival time is
automatically recorded.

Chapter 7. File Processing 149

Reading 2

3. Write the CLOCKUP program, previously specified, which computes how much
time you have worked this month.

Answers:

1. Did everything work correctly? If not, study the error messages and check that
you typed everything in correctly.

2. This can be done by adding the line

CLOCKIN

to your PROFILE EXEC A. If your PROFILE EXEC is not written in REXX,
you should write "EXEC CLOCKIN".

3. A possible answer is:

CLOCKUP EXEC

/* This program computes total time worked in any */
/* month, using data obtained from the file */
/* "month CLOCKUP A ". Command format is: * /
/* */
/* CLOCKUP [month] */
/* */
/* Default is this month. */
monthnames = "JAN FEB MAR APR MAY JUN JUL AUG SEPII,

"0CT NOV DEC"
/*--*/
/* Compute MONTH using argument from command line */
/*--*/
arg month •
if month = 1111

then do

end

month = substr(date(lmonth"),1,3)
upper month

else do

end

if pos(month,monthnames) = 0
then do

end

say "This program computes time worked",
"in any month. 1I

say IICOMMAND FORMAT: CLOCKUP [month]1I
say (default is this month)"
say IINames of months are" monthnames
exit

/* continued .•• */

150 VMjSP System Product Interpreter User's Guide

/*--*/
/* Compute total time worked. */
/* Input is in file MONTH CLOCKUP A */
/*--*/
"MAKEBUP
total = 0
do forever

"EXECIO 1 DISKR" month "CLOCKUP A"
if rc ,= 0 then leave
pull •..•. timein .• timeout.
total = total + (c2s(timeout) - c2s(timein))

/* Note: C2S is an internal */
/* function (See below) */

end

if rc = 2
then do

minutes = total % 60

/* end of fil e */

if total // 60 >= 30
then minutes = minutes + 1
hours = minutes % 60
minutes = minutes // 60

/* round to the */
/* nearest minute */

say "Total time worked in" month "was",
hours "hours" minutes "minutes"

end
else say "Unexpected return code" rc,

"DROPBUP
exit

"from EXECIO 1 DI5KR" month "CLOCKUP A"

/*--*/
/* C2S: Convert to seconds */
/* ======================= */
/* converts time in the format */
/* hh:mm:ss */
/* to seconds */
/*--*/
C25:
arg hh ":" mm ":11 ss
return ss + 60*(mm + 60*hh)

You have just completed Step 34.

Reading 2

Chapter 7. File Processing 151

Reading 2

Using Data From an Existing File to Create a New File
We can now consider file processing in general. The simplest file processing
programs involve taking data from one input file and using it to produce one output
file; this kind of program will be discussed now. More complicated programs,
involving multiple input or output files are dealt with in programming textbooks.

A simple file processing program reads an input file a line at a time, performs some
computation on the data, and stores the result as a line in an output file. Consider
two cases:

1. If the output file does not have the same "filename filetype filemode" as the
input file, the only difficulties are: specifying the computations to be performed,
and coding them accurately. The STARS EXEC example, shown in Figure 56,
is an example of this type of program.

2. If the output file is required to have the same "filename filetype filemode" as the
input file, some care is needed in avoiding the effects of a possible hardware
error. SORT8 EXEC on page 157 is an example of this type of program.

Example: Processing a File to Produce a New File
You can use this program as a model for any program that reads (but does not alter)
an input file and produces a new output file.

152 VM/SP System Product Interpreter User's Guide

/* COMMAND FORMAT: STARS filename */
/* */
/* FUNCTION: */
/* This program reads records from "filename COPY A" */
/* Those that do not have a asterisk in column 1 are */
/* di~carded. The rest are written into a new file */
/* called "filename STARS A". Any previous version */
/* of "filename STARS A" is overwritten. */

/*--*/
/* CHECK argument */
/*--*/
arg fil ename .

if fil ename = ? I fil ename = 1111 /* Help needed? * /
then do recno = 1 /* Display prolog */

end

line = sourceline(recno)
if left(line,2) ...,= "/*" then exit
say line

"STATE" filename "COPY A"
if rc ...,= 0 then do

end

say II Fil e" fil ename "COPY A not found"
exit

/*--*/
/* Erase old output file, if any */
/*--*/
"ERASE" filename "STARS A"
if rc = 0 I rc = 28 then nop
else do

say "Unexpected return code" rc "from ERASE" filename,
"STARS All

exit
end

Figure 56 (Part 1 of 2). STARS EXEC

/* continued */

Reading 2

Chapter 7. File Processing 153

Reading 2

/*--*/
/* Process file */
/*--*/
"MAKEBUF" /* See page 134. * /
do forever

/* Read a record */
subcmd = "R"
II EXECIO 1 DISKR" fil ename "COPY A (VAR RECORD"
if rc ~= 0 then leave

/* If it fits
if substr{record,l,l) "*"

*/

then do /* Copy it to fn STARS */
subcmd = "W"
"EXECIO 1 DISKW' filename "STARS A {VAR RECORD"
if rc ~= 0 then leave

end
end

if subcmd = "R" then do
if rc = 2
then rc = 0

end

/* Reading?
/* End of file?
/* That's OK

if rc ~= 0 then say "Unexpected return code" rc,
"from EXECIO DISK"subcmd

rcsaved = rc
"DROPBUF"
"FINIS" filename "STARS A"
exit rcsaved

Figure 56 (Part 2 of 2). STARS EXEC

*/
*/
*/

Precautions To Be Taken When Modifying an Existing File
If a program is supposed to modify an existing file (that is, produce a new file with
the same fileid), what happens if VMjSP has a failure during the processing? What
happens if the program has a failure?

What usually happens is that the data already filed is safe, but the data being
processed is lost. After a program fails, you might have to run the program again,
either from the beginning or from the point of the failure, depending on the recovery
capabilities of the program. If the input data is still available, there is no problem.
But how does the failure affect the completion of the program? Has the original file
been completely altered, partially altered, or not altered at all?

If the file is stored in an SFS file space and either VMjSP or the program itself fails,
SFS automatically rolls back to the end of the last commit or rollback. Rollback
means that changes made to a file are ignored and are not saved for that file.
Commit, on the other hand, means that changes are saved in the permanent copy of
the file. Therefore, SFS ensures that you have a definite recovery point, and no data
is partially changed. For more information on shared file systems, see your VMjSP
Application Development Guide for eMS.

If the file is stored on a minidisk and VMjSP fails, in most cases you can recover
from the point of the last successful close (except if the file is in CMS 800 - byte
format, in which case the file might be partially changed). If the file is stored on a

154 VM/SP System Product Interpreter User's Guide

Reading 2

minidisk and the program fails, CMS immediately tries to close the file. Because the
program did not complete its processing, the file probably contains partially changed
data.

If you know that your program will be used to process only SFS files, you might not
need to build in any special precautions, because of the safeguards built into SFS.
However, users might have created aliases of those files and/or granted authorities on
the files to other users. You must be careful in your program not to use functions
(such as the RENAME command) that would destroy these aliases and authorities.

If your program will be used to process minidisk files, or if you want your program
to be able to process all types of files, you can ensure that the program can handle
these special cases by using the temporary file technique.

For example, if MY FILE A is to be processed by a program called PROCESS
EXEC to produce a new MY FILE A, the PROCESS program should:

1. Read MY FILE A without changing it and generate a processed temporary file
called PROCESS CMSUTI A.

2. COPYFILE PROCESS CMSUTI A MY FILE A (REPLACE.

Note: COPYFILE (REPLACE will not destroy SFS authorities that the owner
of the file might have granted or aliases that users might have created).

3. ERASE PROCESS CMSUTI A.

If VM/SP or the program fails, you can usually determine where the failure occurred
from the messages that are generated. You can recover your data as follows:

I. If the failure occurred before PROCESS started, MY FILE A is unchanged.
Start the program again.

2. If the failure occurred while processing, PROCESS CMSUTI A might contain
incomplete data, but MY FILE A is unchanged. Erase PROCESS CMSUTI A
and restart the program.

3. If the failure occurred while COPYFILE was working, MY FILE A might
contain incomplete data, but PROCESS CMSUTI A contains the completely
processed data. Reissue the COPYFILE command.

4. If the failure occurred after COPYFILE completed, MY FILE A was updated
successfully. If PROCESS CMSUTI A still exists, you can erase it.

By convention, the filetype CMSUTI is reserved for temporary files. Thus, XED IT
CMSUTI A contains an updated file while it is actually being filed, and COPYFILE
CMSUTI A contains the intermediate result of a COPYFILE command. You will
not see a CMSUTI file generated by a command very often, because it is left in your
directory or on your primary minidisk, filemode A, only if there is a failure at the
instant that the command is working.

Some of the precautions we have just discussed are applied in an example called
SORT8 EXEC, which you can find on page 157.

You have just completed Step 35.

Reading 2 continues in Chapter 8, "XEDIT" on page 161.

Chapter 7. File Processing 155

Reading 3

Other Techniques
Reading 3

The technique previously described in this chapter is the most general. It works just
as well when the file you are modifying is too big to fit into the storage available.
And once you have designed one program, it is very easy to design another one.

But in special situations you might consider:

• For searching a file, when only a small proportion of the records need to be
processed, use any of the FIND, LOCATE, A VOID or ZONE options of the
EXECIO command. The time taken to execute your program will be
significantly reduced.

• For changing the format of a file, use the COPYFILE command.

• For rearranging fields within each line of a file, use the COPYFILE command.

• For sorting files according to the contents of a field or fields that occupy fixed
position(s) within every line, use the SORT command. This command will
"respect" case, that is, "z" is taken to be less than "A".

• For processing files that are small enough to be edited by XEDIT, use XEDIT.
For example, to sort a file "ignoring" case, use the XEDIT subcommand SORT.
Remember to take care of nonzero return codes from XEDIT commands. (It
may take you a little time to learn how to use XEDIT for file processing.)

An Example: Sorting a File
This program contains examples of:

• Using the LISTFILE command to obtain details about an existing file
• Using the SORT command
• Precautions to be taken when modifying an existing file
• Suppressing messages from CMS commands.

156 VM/SP System Product Interpreter User's Guide

/* This program sorts according to the contents of */
/* columns 1 through 8 of each record. All lowercase */
/* letters, la l , are presumed to come before */
/* uppercase IAI. */
/* */
/* COMMAND FORMAT: SORT8 filename filetype [filemode] */
/* */
/* If the operation is completed without error, the */
/* sorted file replaces the original file. If there */
/* is an error (for example, not enough room in your */
/* file space or on the minidisk you have accessed */
/* as A), the original file is unchanged. */
/* Exceptionally, the original file may be destroyed, */
/* in this case the file SORT8 CMSUTI A contains the */
/* true result. */

/*--*/
/* Check arguments */
/*--*/
arg fname ftype fmode .
if ftype = 1111 then do

say IICommand format is: SORT8 fn ft [fm]1I
exit

end
if fmode = 11*11 then do

say IIFilemode 1*1 is not allowed ll

exit
end
if fmode = 1111 then fmode = a

/*--*/
/* Check fileid, record format, record length */
/*--*/
IIMAKEBUF II
IlLISTFILE II fname ftype fmode II (STACK FORMAm
rcsave = rc
if rc = 0
then pull • . . recfm 1 recl •
IIDROPBUF II

/* Something stacked */

if rcsave = 28 then say IIFile not found ll

if rcsave ~= 0 then exit rc
if recfm ~= II P then do

end

say IIFile is not fixed format ll

exit 32

Figure 57 (Part 1 of 3). SORT8 EXEC

/* continued ••• */

Reading 3

Chapter 7. File Processing 157

Reading 3

if lrecl < 8 then do

end

say "Record length less than 8"
exit 24

/*--*/
/* If workfile still exists, warn user (For full */
/* explanation, see page 154). */
/*--*/
address command "STATE SORT8 CMSUT1 A" /* see page 141 */
select

end

when rc = 28 then nop /* does not exist. All's well */

when rc = 0 then do

end

say "Work file SORT8 CMSUT1 A from previous SORT8",
"command still exists."

say "Check that previous operation did not destroy",
"any files."

say "Then ERASE SORT8 CMSUT1 A and repeat your",
"SORT8 command. II

exit

otherwise
say "Unexpected return code ll rc,

IIfrom STATE command"
exit rc

/*--*/
/* Sort into SORT8 CMSUT1 A */
/*--*/
"MAKEBUF"
"SET CMSTYPE HTII

queue 1 8 /* sort field */
"SORT" fname ftype fmode "SORT8 CMSUT1 A"
rcsave = rc
"SET CMSTYPE RT"
"DROPBUP

Figure 57 (Part 2 of 3). SORT8 EXEC

/* continued .•• */

158 VM/SP System Product Interpreter User's Guide

if rcsave = 0 then nop
else do

/* Allis well

end

select

end

when rcsave = 40 then
say "Maximum number of records exceeded II

when rcsave = 100 then
say "Error reading/writing file."

otherwise
say "Unexpected return code" rcsave,

"from SORT command."

say "Ori gi na 1 fil e unchanged. II

"ERASE SORT8 CMSUT1 A"
exit rcsave

*/

/*--*/
/* Replace old file with sorted file */
/*--*/
"COPYFILE SORT8 CMSUT1 A" fname ftype fmode "(REPLACE"
if rc ~= 0 then do

say "Unexpected return code" rc,
"from COPYFILE command. Possible disaster. II

exit
"ERASE SORT8 CMSUT1 A"

Figure 57 (Part 3 of 3). SORT8 EXEC

Processing Files in the eMS Shared File System

Reading 3

To obtain the additional file management and file sharing functions of the CMS
Shared File System (SFS) and process SFS Files, you can use:

• CMS commands that support these functions

• Callable services library (CSL) routines.

The CSL supplied with VM/SP is named VMLIB. VMLIB contains routines that
you can call from your REXX program to perform SFS functions, such as:

• Opening and closing files and directories

• Reading and writing records and blocks

• Creating directories and aliases

• Granting and revoking authorities

• Committing or rolling back changes.

For information about how to code the REXX CSL external function call, see the
VM/SP System Product Interpreter Reference. CSL routines are described in the
VMjSP Application Development Guide for eMS and the VMjSP Application
Development Reference for eMS.

Reading 3 continues in Chapter 8, "XEDIT" on page 161.

Chapter 7. File Processing 159

Reading 3

/'

160 VM/SP System Product Interpreter User's Guide

Reading 1

Chapter 8. XEDIT

Reading 1

XEDIT is the editor supplied with VM/SP. You can customize XEDIT for your
own purposes by writing special REXX programs called macros. This chapter
introduces some important ideas about these programs.

In this chapter:

immediately following, describes:

• How your program can be invoked from the XEDIT command line

• How to enter subcommands to XEDIT from your REXX program

o Names for XEDIT macros

• Return codes from XEDIT subcommands

• How to display messages in the XEDIT message area.

Reading 2 on page 165, describes:

• Note: You should not attempt this reading until you have a working
knowledge of XEDIT.

• How the private variables of XEDIT can be made available to your REXX
program, using the EXTRACT command

• The current line of a file

o An example XED IT profile.

Reading 3 on page 168, describes:

• How to construct a menu.

XEDIT Subcommands and Macros
Reading 1

Commands to XEDIT are usually called sub commands to avoid any possible
confusion with commands to CMS.

When you are using XEDIT and you type a word on the XEDIT command line and
press ENTER, XEDIT will treat this as a:

Subcommand

Macro

If the first word on the command line is one of the XEDIT
subcommands (defined in the VM/SP System Product Editor
Command and Macro Reference), XEDIT will obey it.

If the word is not a subcommand, XEDIT wi1llook for a file of
the same name with a filetype of XED IT and execute that.
This type of file is called a macro.

Chapter 8. XEDIT 161

Reading 1

XEDIT Macros

For example, if the file TEN XEDIT, shown in Figure 58,
exists in a directory or on a minidisk that you have accessed,
and you type the word

ten

on the XEDIT command line, XED IT will try to execute TEN
XEDIT.

Note: To find a file in a directory, read authority is required
on both the file and the directory. If the file is locked, the
execution will fail with an error message.

CMS or CP command
If a macro does not exist, XEDIT will try to execute what is
typed in as a CMS or CP command.

A REXX program that issues subcommands to XED IT is called a macro. It must
have a filetype of XED IT. To indicate that your program is written in the REXX
language, it must begin with a REXX comment, as usual.

Because the file type of your program is XED IT, the interpreter will assume that the
environment is XEDIT. And therefore any clause in the program that the
interpreter does not recognize as

an instruction,
an assignment,
a label, or
a null clause

will be evaluated in the usual way and the result will be passed to XEDIT for
execution.

Naming of XEDIT Macros
XED IT macros, like other CMS files, can have filenames from one-to-eight
characters long. The filenames of XEDIT macros should not contain numeric digits.
(This is because XEDIT treats the number as an argument. For example, MYMAC5 is
the same as MYMAC 5).

Example: Changing the Settings of the Scroll Keys
When you are looking through a file, you will usually want to move forward or
backward a page at a time. Sometimes you may prefer to move forward or
backward half a page at a time. For example, you can use this when checking a
program. This forward and backward movement through your file is called
scrolling.

Use XEDIT to create the following file called TEN XEDIT.

162 VM/SP System Product Interpreter User's Guide

Return Codes

/* This program changes the settings of PF Keys 7 and 8 */
/* so that you scroll backwards or forwards 10 lines */
/* at a time. */
"SET PF7 UP 10"
"SET PF8 NEXT 10"

Figure 58. TEN XEDIT

Reading 1

Now use XEDIT to display any large file. Type TEN on the XEDIT command line,
and press ENTER. Press PF8 to scroll down the file. Each time you press PF8 you
will advance 10 lines down the file. Similarly, each time you press PF7 you will
move 10 lines nearer the top of the file.

To restore the setting that XEDIT usually provides, you could use this program.

/* This program changes the settings of PF Keys 7 and 8 */
/* so that you scroll backward or forward one page */
/* at a time. */
"SET PF7 BACKWARD"
"SET PF8 FORWARD"

Figure 59. PAGE XEDIT

Your REXX program should be able to handle nonzero return codes from XEDIT
subcommands.

To find out what return codes can be expected from an XEDIT subcommand, look
up the subcommand in the VMjSP System Product Editor Command and Macro
Reference. Return codes are listed in the last paragraph of the description of each
command. For example, the XEDIT subcommand

NEXT

will give a return code of 1 when end of file is reached.

When you are first learning to write XEDIT macros, you should put the instruction
TRACE Errors at the top of your program. This will cause a trace to be displayed
if any XEDIT command gives a nonzero return code. For example:

/* Example: tracing a syntax error */
trace errors
"EXTRACT II tooth /* EXTRACT is a valid command, but */

/* 'tooth' is not a valid operand */

Figure 60. DENTAL XEDIT

Chapter 8. XEDIT 163

Reading 1

Messages

Executing the command DENTAL from the XEDIT command line would cause the
following to be displayed:

denta 1
3 *-* extract tooth /* EXTRACT is valid command. but */

+++ RC(5) ++++

To display messages in the XEDIT message area, use:

MSG text_of_message

For example:

NEXT
if rc = 1 then MSG "End of file reached"

You have just completed Step 16.

Reading 1 continues in Chapter 9, "Control" on page 171.

164 VM/SP System Product Interpreter User's Guide

Reading 2

The EXTRACT Subcommand

The Current Line

Reading 2

To obtain almost any variable known to XEDIT, use the EXTRACT subcommand.

For example, the physical size of your screen might be 24 lines or 32 lines; and you
could find out the size of your screen by entering QUERY SCREEN on the XEDIT
command line.

To obtain the same information for use in your REXX program, use:

EXTRACT /SCREEN/

The EXTRACT subcommand requires a delimiter to separate the operands. In this
book, we shall use / as the delimiter. Notice how / is used in the preceding
EXTRACT command. For this example, it would also be correct to use:

EXTRACT /SCREEN

The EXTRACT /SCREEN subcommand assigns values to an array of REXX
variables:

SCREEN.O The number of other variables in the array. (That is, 1 in this case.)

SCREEN.1 Two words, namely the word SIZE followed by the number of lines on
the screen.

We could use this subcommand to extend the program TEN XEDIT, described
above, to handle any size of screen:

/* This program changes the settings of PF Keys 7 and 8 */
/* so that you scroll backwards or forwards half a */
/* screen at a time. */
IIEXTRACT /SCREEN II
amount = (substr(screen.1,5) - 4) % 2
IISET PF7 Upil amount
IISET PF8 NEXT II amount

Figure 61. HALF XED IT

EXTRACT /SCREEN assigns "SIZE 24" or "SIZE 32" to SCREEN .1; the SUBSTR()
function returns the number from this; and the value that amount gets will be either
10 (for 24-line screens) or 14 (for 32-line screens).

The current line of a file is used as the starting-point for many XEDIT
subcommands. You can change its physical position on the screen by using the SET
CURLINE subcommand. The default position is the line above the middle of the
screen.

Chapter 8. XEDIT 165

Reading 2

To obtain information about the current line, use the XEDIT subcommand:

EXTRACT /CURLINE

This command assigns values to an array of REXX variables:

CURLINE.O The number of other variables in the array

CURLINE.l The operand that positioned the current line on the screen (see the
VM/SP System Product Editor Command and Macro Reference)

CURLINE.2 The line number of the current line on the screen

CURLINE.3 The contents of the current line

CURLINE.4 'ON' if the current line has been changed or inserted in this editing
session; 'OFF' otherwise.

Here, the most interesting variable is CURLINE.3 (the file data that is displayed on
the current line). We shall use it in the next example.

An Example: Moving through a File a Paragraph at a Time
In some files (like the example programs in this book) the writer leaves a blank line
between one paragraph and the next. This next program lets you scroll through the
file a paragraph at a time.

/* This program scrolls forward until the line above */
/* the current line is blank. If end of file is */
/* reached, or if there is an unexpected error, an */
/* audible warning is given. */

do until curline.3 = 1111
IIEXTRACT /CURLINP
next

end

if rc ~= G then do
11505 ALARMII

exit
end

Figure 62. PARA XEDIT

Your XEDIT Profile

/* an XEDIT subcommand: sound */
/* audible alarm. (bleep) */

The program PROFILE XEDIT is automatically executed every time you start to
edit a new file. Following is an example of a profile that you can use in XEDIT.
For more information on creating XEDIT profiles, refer to the VM/SP System
Product Editor User's Guide.

166 VM/SP System Product Interpreter User's Guide

/* Profile Xedit to customize Xedit environment */
signal on error
/* */
/* set desired pf keys not defaulted */
/* */
IISET PF13 FILEII
IISET PF16 LEFT 20 11 ; IISET PF17 RIGHT 20 11
/* */
/* tailor Xedit to my specifications */
/* */
IISET VERIFY 1 7211
IISET NULLS OWl
IISET FULLREAD ON II
IISET CASE MIXED IGNORE II
IISET WRAP ON II
IISET HEX ON II
IISET AUTOSAVE 1011
IISET MSGLINE ON 3 OVERLAY II
IISET SCALE ON 211
IISET CURLINE ON 8"
IISET NUM ON II
IISET PREFIX NULL LEFTII
/* */
/* set color for 3279 terminal */
/* */
SC = IISET COLOR II
SC IIARROW PINK
SC IICURLINE WHITE REV
SC IIIDLINE BLUE REV
SC IIPENDING WHITE REV
SC IISCALE GREEN REV
SC IISTATAREA PINK REV
SC IITOFEOF RED REV II

SC CMDLINE REDII
SC FILEAREA TURQ REV II
SC MSGLINE RED BLINK"
SC PREFIX YELLOW II
SC SHADOW YELLOW BLINKII
SC TABLINE REDII

/* */
/* set TRUNC and SERIAL for special files */
/* */
"EXTRACT /RECFM /TRUNC /FTYPE II
if (ftype.1='DIR-UPDT ') I (ftype.1='DIRECT ')

then SET TRUNC 72
if (recfm.1='F ') & (trunc.1<=72) then SET SERIAL ALL
RETURN:

return
ERROR:

IIS0S ALARMII
msg "Unexpected return cadell rc IIfrom line ll sigl,

lIof XEDIT profile"
return

Figure 63. PROFILE XEDIT

Reading 2 continues in Chapter 9, "Control" on page 171.

Reading 2

Chapter 8. XEDIT 167

Reading 3

Menus Using XEDIT
Reading 3

The System Product Editor (XEDIT) can be used with the System Product
Interpreter to generate full-screen menus. A short example of a full-screen menu is
shown in Figure 65. It shows the user the name of the last file edited, lets the user
select this file or another, and then invokes XEDIT on the selected file. This
example is presented here for the concept only, and explanations of the technical
details are not given. Please refer to the VMjSP System Product Editor Command
and Macro Reference, for information on the XED IT subcommands and macros.

The TESTMENU program, following, invokes XED IT using SAMPMENU as a
profile. To try this, create the TESTMENU program and then enter testmenu on
the CMS command line.

/* sample exec to show use of an XEDIT full screen menu */
"XEDIT" lastfile edited "(PROF" sampmenu

Figure 64. TESTMENU EXEC

To try this, enter testmenu on the CMS command line. The TESTMENU program,
following, simply invokes XEDIT using SAMPMENU as a profile.

168 VM/SP System Product Interpreter User's Guide

Reading 3

/* Sample XEDIT full screen menu
/* First set up control characters needed for the screen

"COMMAND SET CTLCHAR % ESCAPE"
"COMMAND SET CTLCHAR @ PROTECT RED HIGH"
"COMMAND SET CTLCHAR ¢ PROTECT YELLOW NOHIGH"
"COMMAND SET CTLCHAR ! PROTECT BLUE NOHIGH"
"COMMAND SET CTLCHAR $ NOPROTECT TURQ HIGH"
"COMMAND SET CTLCHAR & PROTECT PINK REV NOHIGH"

/* Get old file ID and screen length */
I: 11
II EXTRACT /CURLI NE/LSCREEN II
parse var curline.3 oldname oldtype oldmode
"COMMAND SET MSGLINE ON LSCREEN.I-2 2 OVERLAY"
message = 1111

*/
*/

/* Loop, reading the user response.
do forever

If ENTER, leave the loop */

call display_screen
"READ NOCHANGE TAG"
do queued()

/* display the current screen */
/* allow user input, read it

/* process stacked lines */
pull key line column string
select

when key=IRES" /* reserved line input? */
then select /* yes, re-set file ID items */

when line = 8 then oldname = string
when line = 10 then oldtype = string
when line = 12 then oldmode = string

end
when key=ICMD" then line column string /* commands go to host*/
when key=IETK" then nop
when key=IPFK"

then if line=3 I line=15
then do

cms desbuf
command quit
exit

end

/* PF key pressed?
/* yes, 3 or 15?
/* yes,
/* clear stack
/* and quit

*/
*/
*/
*/
*/

else message = "Unsupported PF key" /* bad PF key pressed */
otherwise message = "Unsupported function" /* unknown func. */

end
end
if (message = 1111) & (words(oldname 01dtype)=2) then leave

end

/* continued... */

Figure 65 (Part 1 of 2). SAMPMENU XED IT

*/

Chapter 8. XED IT 169

Reading 3

/* replace the last file edited with the new file to be edited, */
/* stack the XEDIT command, and quit */
"REPLACE" oldname oldtype oldmode
push "XEDIT" oldname oldtype oldmode
"COMMAND FILE"
exit
/* routine to display the screen
display_screen:

"SET RESERVED 1 NOH"
"SET RESERVED 2 NOH" '%@

center('Sample XEDIT
'%@***

"SET RESERVED 3 NOH"
"SET RESERVED 4 NOH"

***%&' ,
full screen menu',35),

"SET RESERVED 5 NOH" '%¢ The foll owi ng fil e was the 1 ast one',
'edited. Press enter to'

*/

"SET RESERVED 6 NOH" '%¢ edit the same file, or key in a new file',
'ID and press enter.'

"SET RESERVED 7 NOH"
"SET RESERVED 8 NOH" '%!
"SET RESERVED 9 NOH"
"SET RESERVED 10 NOH" '%!
"SET RESERVED 11 NOH"
"SET RESERVED 12 NOH" '%!
do i = 13 to lscreen.I-2

"SET RESERVED" i "NOH"
end

File name: %$'left(oldname,8)'%¢'

File type: %$'left(oldtype,8) '%¢ ,

File mode: %$'left(oldmode,2) '%¢ ,

if message ..,= "" then do; emsg message; message=' '; end;
"CURSOR SCREEN 8 26"
return

Figure 65 (Part 2 of 2). SAMPMENU XEDIT

Reading 3 continues in Chapter 9, "Control" on page 171.

170 VM/SP System Product Interpreter User's Guide

Control

Chapter 9. Control

A program can be:

• A single list of instructions

• A number of short lists connected by instructions indicating which list is to be
executed next.

In this chapter we discuss how you can steer a course from one short list of
instructions to another.

The chapter is divided into five sections, one for each of the maneuvers that you
might want to accomplish. They are:

Selection

Loops

EXIT

Calls to subroutines

Jumps

To tell the interpreter to select for execution one of a
number of lists of instructions, use the IF instruction or
the SELECT instruction.

To tell the interpreter to repeat a list of instructions,
either for a specified number of times or so long as some
condition is satisfied, use the DO instruction.

To tell the interpreter to finish executing your program,
use the EXIT instruction.

To tell the interpreter to execute a subroutine, then
return and execute the next sequential instruction, use
the CALL instruction. Subroutines usually perform a
separate, well-defined task; and they can be called from
more than one place in the main program.

To tell the interpreter to continue from a different point
in the same file, use the SIGNAL instruction.

Note: Some languages allow "Goto" to transfer control to any instruction in a
program. In practice it was found that this permitted too many programming errors
and thus, in modern languages the use of "Goto" is restricted. In REXX, the
nearest equivalent to "Goto" is SIGNAL. Never use SIGNAL for constructing
loops; always use DO.

Chapter 9. Control 171

Reading 1

Selection

Reading 1

To tell the interpreter how to decide which instructions are to be executed next, you
can use the IF instruction or the SELECT instruction.

covers the entire "Selection" section starting on page 173 It describes:

• The IF instruction and its keywords THEN and ELSE

How to specify a group of instructions as the object of a THEN or
ELSE keyword

How to avoid the "dangling" ELSE

• The SELECT instruction and its keywords WHEN, THEN, OTHERWISE
and END

• The NOP instruction.

Reading 2 skips this section.

• Continue Reading 2 in "Loops" on page 184.

Reading 3 skips this section.

• Continue Reading 3 in "Loops" on page 184.

172 VM/SP System Product Interpreter User's Guide

The IF Instruction
Reading 1

True

THEN

instruction

Reading 1

True

THEN

DO
instruction1
instruction2
instruction3

END

To tell the interpreter how to make a decision about a single instruction use:

IF expression
THEN instruction

The interpreter will execute instruction only if expression is true. For example:

if answer = "YES"
then say "OK!"

The SAY instruction will be executed, only if ANSWER has the value "YES".

To tell the interpreter to execute a group of instructions use:

DO

END

instructionl
instruction2
instruction3

This form of the DO instruction and the END keyword associated with it tell the
interpreter to treat the enclosed instructions as a single instruction. You should
indent the enclosed instructions three spaces to the right. This will help a person
reading the program to see that they belong together.

Chapter 9. Control 173

Reading 1

For example:

if answer = IIYES II
then do

end

say 1I0K. Please enter the filename and filetype ll
,

1I0f your input file ll

pull fn ft •
IISTATE II fn ft /* A eMS command to verify */

/* that file exists. (It */
/* returns zero if it does.) */

if rc = 0 then say IIProcessing ll fn ft

say IIWhat next?1I

If ANSWER is equal to "YES", all the instructions will be executed; if not, only the
last instruction will be executed.

The ELSE Keyword

True False

When you want the interpreter to select from one of two possible instructions use:

IF expression
THEN instruction!
ELSE instruction2

The interpreter will execute instruction2 only if expression is false. For
example, if you wanted:

you could code:

if answer = IIYES II
then say 1I0Kl il

else say IIWhy not?1I

174 VM/SP System Product Interpreter User's Guide

Reading 1

The interpreter will display "OK!" if ANSWER has the value "YES"; but display "Why
not?" if ANSWER does not have the value "YES."

As before, when selecting a list of instructions, you must use "DO ... END" to
mark the beginning and end of the list.

if answer = "YES"
then say "OK!"
else do

say "Why not?"
pull excuse
if pos(ISORRY",excuse) -.= 0 /* The REXX function */

/* POS() returns 10 1

then say "I see"

/* if ISORRY I does not */
/* appear in EXCUSE */
/* (see page 83). * /

else say "I just donlt understand you"
end

More complicated situations can be handled using a succession of IFs. The next
chart shows two successive decisions leading to one of four possible outcomes.

Weather = fine?

TRUE

Play tennis Take a stroll

The best way to code this is:

if weather = fine
then do

if tenniscourt = free
then say "Shall we play tennis?"
else say "Shall we take a stroll?"

end
else do

end

if players = 2
then say "Shall we play chess?"
else say "Shall we play poker?"

TRUE

Play chess Play poker

As before, indenting the secondary decisions to the right makes it easier for the
human reader to see the structure of the program. If you look carefully, you can see
that the preceding program has the same structure as the chart above.

Chapter 9. Control 175

Reading 1

The "Dangling" ELSE
The "DO ... ; ... ; END"s also help the interpreter to keep the ELSEs tied to the right
IFs. Look at this fragment:

/* The dangling ELSE */
/* -------- */

if weather = fine
then

if tenniscourt = free
then say "Shall we play tennis?"

else say "Shall we take our raincoats?"

/* The interpreter will take this ELSE to belong */
/* to the nearest preceding IF, but a person */
/* reading the program might easily assume that it */
/* belonged to the first IF. */

Avoid writing code like the preceding example. It is too error-prone. Programs that
have IFs within IFs should use "DO ... END." This example pairs THEN DO with
END and THEN with ELSE.

if ...
then do

if ...
then do

end
else

end
else do

end

176 VM/SP System Product Interpreter User's Guide

Did You Understand That?
1. What will the following program do?

/* WHATODO EXEC */
/* input data */
weather = IlFINEIl
tenniscourt = IIFREEII
players = 2

/* example of a program that does
/* as recommended previously
trace results
if weather = fine
then

if tenniscourt = free

not use 1100 ••• ENDII */
*/

then say IIShall we play tennis?1I
/* else say IIShall we take a stroll?1I DELETED */

else
if players = 2
then say IIShall we play chess?1I
else say IIShall we play poker?1I

Reading 1

Try it! The REXX instruction TRACE Results will help you to see what is
happening.

Answers:

1. Do not be deceived by the indentation! The ELSE is associated with the nearest
preceding IF. The following table can help you determine what happens when
certain values are given to weather, tenni scourt, and pl ayers.

Weather = fine?

TRUE FALSE

Tenniscourt = free?

TRUE

Play tennis
TRUE

Play chess Play poker

Chapter 9. Control 177

Reading 1

For the values given in the WHATODO EXEC, the following will result:

whatodo
7 *-* if weather = fine

»> 11111

8 *-* then
9 *-* if tenniscourt = free

»> 11111

10 *-* then
- say IIShall we pl ay tenni S?II
»> IIShall we play tennis?1I

Shall we play tennis?
11 *-* /* else say IIShall we take a stroll?1I */

Ready;

You have just completed Step 17.

The SELECT Instruction

SELECT

THEN

instruction 1

instruction2

instruction3

OTHERWISE

instruction(s)

END

178 VM/SP System Product Interpreter User's Guide

Reading 1

If you want the interpreter to select one of any number of instructions, use:

SELECT

END

WHEN expression1 THEN instruction1
WHEN expression2 THEN instruction2
WHEN expression3 THEN instruction3

OTHERWISE
instruction
instruction
instruction

• If express i on1 is true, instruct i on1 is executed. After this, processing
continues with the instruction following the END.

• But if express i on1 is false, express i on2 is tested. Then, if express i on2 is true,
i nstructi on2 is executed and processing continues with the instruction following
the END.

• If all of expression1, expression2, and so forth, are false, an OTHERWISE
keyword must be present. Then,

• Processing continues with the instruction following the OTHERWISE.

As before, to tell the interpreter to execute a list of instructions following the THEN
keyword, use:

DO

END

instruction1
instruction2
instruction3

This form of the DO instruction and the END keyword associated with it tell the
interpreter to treat the enclosed instruct ions as a single instruction.

A "DO; ... ; END;" group is not required after the OTHERWISE keyword.

Chapter 9. Control 179

Reading 1

Example
Here is a short program that uses SELECT:

/* This program requests the user to provide a person's */
/* age and sex. In reply, it displays a person's */
/* status. Persons under the age of 5 are BABIES. */
/* Those aged 5 through 12 are BOYS or GIRLS. */
/* Those aged 13 through 19 are TEENAGERS. */
/* The rest are MEN or WOMEN. */

/*--*/
/* Get input from user */
/*--*/
do until datatype(age,NUMBER) & age >= 0

say "What is the person's age?"
pull age

end

do until sex = "M" I sex = "F"

end

say "What is the person's sex (M or F)?"
pull sex

/*--*/
/* COMPUTE STATUS */
/* */
/* Input: */
/* AGE Assumed to be 0 or a positive number. */
/* SEX "M" is taken to be male; */
/* anything else is taken to be female. */
/* */
/* Result: */
/* STATUS Possible values: BABY, BOY, GIRL, TEENAGER */
/* MAN, WOMAN. */
/*--*/
Select

end

when age < 5 then status = "BABY"
when age < 13 then do

if sex = "M"
then status = "BOY"
else status = "GIRL"
end

when age < 20 then status "TEENAGER"
otherwise

if sex = "M"
then status = "MAN"
else status = "WOMAN"

say "This person should be counted as a" status

Figure 66. CENSUS EXEC

Each SELECT has a corresponding END. To make your program easier for people
to read, you should indent everything between the SELECT and the END three
spaces to the right.

180 VM/SP System Product Interpreter User's Guide

Reading 1

The NOP Instruction
A THEN or ELSE keyword must be followed by an instruction. In cases where you
intend that nothing should be done, use a NOP (no operation) instruction.

Here are two examples:

/* Example: steering a course

Say "Where is the harbor?"
pull where
select

end

when where = "AHEAD" then nop
when where = "PORT BOW" then say "Turn left"
when where = "STARBOARD BOW" then say "Turn right"
otherwise say "Not understood II

Figure 67. PILOT EXEC

*/

/* Example: using NOP to simplify the presentation of */
/* a set of conditions. */

If gas = "FULL" & oil = "SAFE" & window = "CLEAN"
then nop
else say "Find a gas station!"

Figure 68. TRUCKER EXEC

Did You Understand That?
1. Write a program that asks the user to enter two words (on the same line) and

computes whether:

• The words are the same (or numerically equal)

• Thefir~wocd~high~

• The second word is higher.

The comparison must ignore differences in case. For example, "A" will count as
equal to "a".

2. "Thirty days hath September, April, June, and November; all the rest have
thirty-one, excepting February alone "

Write a program that asks the user to specify the month as a number between 1
and 12 and gives the number of days in the month in reply. For month '2', the
reply can be '28' or '29'.

Chapter 9. Control 181

Reading 1

Answers:

1. A possible answer is:

COMPARE! EXEC

/* This program requests the user to supply two */
/* words and says which is higher. */
say IIEnter two words ll
pull word! word2 •
select

when word! = word2
then say liThe words are the same ll ,

liar numerically equal"
when word! > word2
then say liThe first word is higherll
otherwise
say liThe second word is higherll

end

An alternative answer is:

COMPARE2 EXEC

/* This program requests the user to supply two */
/* words and says which is higher. */
say IIEnter two words ll
pull word! word2 •
if word! = word2
then say liThe words are the same ll ,

II or numeri ca 11 y equa 1"
else do

end

if word! > word2
then say liThe first word is higherll
else say liThe second word is higher ll

Some people would consider the first solution better, because it is slightly easier
to understand.

182 VM/SP System Product Interpreter User's Guide

2. To say how many days in the month:

CALENDAR EXEC

/* This program requests the user to enter a whole */
/* number from 1 through 12 and replies giving the */
/* number of days in that month. */
/*--*/
/* Get input from user */
/*--*/
do until datatype(month,WHOLE) ,

end

& month >= 1 & month <= 12
say "Enter the month as a number from 1 through 12"
pull month

/*--*/
/* Compute days in month */
/*--*/
select

end

when month = 9 then days = 30
when month = 4 then days = 30
when month = 6 then days = 30
when month = 11 then days = 30
when month = 2 then days = "28 or 29"
otherwise
days = 31

say "There are" days "days in Month" month

You have just completed Step 18.

Reading 1 continues in "Loops" on page 184.

Reading 1

Chapter 9. Control 183

Reading 1

Loops

Reading 1

A loop is a group of instructions that may have to be executed more than once.

In this section:

immediately following, describes:

• Repetitive DO loops

- Control variables
- The BY expression

• Conditional DO loops

DO FOREVER and LEAVE instructions
DO WHILE instruction
DO UNTIL instruction.

Reading 2 on page 196, describes:

• Compound DO instructions

• Leaving a specified loop.

Reading 3 on page 198, describes:

• The ITERATE instruction.

Simple Repetitive Loops
Reading 1

To repeat a loop a number of times, use:

DO exprr
instructionl
instruction2
instruction3

END

where:

exprr (the expression for repetitor) gives a whole number, which is the number
of times the loop is to be executed.

To make your program easier for people to read, you should indent the instructions
between the DO and the END three spaces to the right.

184 VM/SP System Product Interpreter User's Guide

Reading 1

Here are two examples of repetitive loops. The first is about preparing for a
meeting. Each person attending will require three documents. The program that
prints the documents is:

/* To print documents for a meeting: for each person, */
/* the agenda, minutes and accounts are printed one */
/* after the other. Between sets, the CP output */
/* header appears. */

"SPOOL PRINT CONT" /* See the following note */
do 5

"PRINT AGENDA DOCUMENT"
"PRINT MINUTES DOCUMENT"
"PRINT ACCOUNTS DOCUMENT"
"SPOOL PEINT CLOSE*sdq. /* See the fall owi ng note * /

end
IISPOOL PRINT NOCONT"

Figure 69. HANDOUTS EXEC

The program in Figure 69 prints five sets of documents.

Note: The following command, which is used in the HANDOUTS EXEC, tells CP
to collect any files that it is asked to PRINT into a batch.

SPOOL PRINT CONT

The batch accumulates until the command SPOOL PRINT CLOSE is issued.
SPOOL PRINT CLOSE causes the batch to be printed, but leaves CONT in effect.
See the your VMjSP CP General User Command Reference for details.

In this next program, the instruction between the DO and the END will be
executed HEIGHT times.

/* The user is asked to specify the height of a */
/* rectangle (within certain limits). The rectangle */
/* is then displayed on the screen. */

say "Enter the height of the rectangle",
II (a whole number between 3 and 15)."

pull hei ght
select

when -,datatype(height,WHOLE) then say "Rubbish!"
when height < 3 then say "Too small!"
when height> 15 then say "Too big!"
otherwise

/* draw rectangle */
do height

say copies("*",2*height)
end

say "What a pretty box!"
end

Figure 70. RECTANGL EXEC

Chapter 9. Control 185

Reading 1

Using a Control Variable
To number each pass through the loop, in such a way that you can use that number
as a variable in your program, use:

DO name = expri [TO exprt]
instructionl
instruction2
instruction3

END

where:

name is the control variable. You can use it in the body of the loop. Its value
is changed (in this example, increased by 1) each time you pass through
the loop.

expri (the expression for the initial value) gives the value you want the control
variable to have the first time through the loop.

exprt (the expression for the TO value) gives the value you want the control
variable to have the last time through the loop.

The next diagram shows exactly how the control variable is changed, and how the
decision to leave the loop is made.

instruction 1
instruction2
instruction3

You can use the control variable to compute something different each time through
the loop. In this example, the control variable is called COUNT, and it is used to
compute the width of each row of stars.

186 VMjSP System Product Interpreter User's Guide

/* This program displays a triangle on the screen. */
/* The user is asked to specify the height of the */
/* triangle. */

say IIEnter the height of the triangle ll
,

II (a whole number between 3 and 15).11
pull height
select

when -.datatype(height,WHOLE) then say IIRubbish!1I
when height < 3 then say IIToo small!1I
when height> 15 then say "Too big!1I
otherwise

/* draw triangle */
do count = 1 to height

say copies(II*II,2*count - 1)
end

say IIWhat an ugly triangle!"
end

Figure 71. TRIANGLE EXEC

Reading 1

After you have left the loop, you can still refer to the control variable. It will always
exceed the value of the TO expression (exprt).

The BY Expression
So far, we have assumed that the control variable will be incremented by 1 each time
through the loop. This is the default. To specify some other value, write:

DO name = expri [BY exprb] [TO exprt]

END

where:

exprb (the expression for BY) gives the number that is to be added to name at
the bottom of the loop.

Did You Understand That?
1. If you carefully study the flowchart on page 186, you should be able to predict

what this program will "say".

1MORE EXEC

/* Example: use of a control variable */
do digit = 1 to 3

say digit
end
say "Now we have reached" digit

Chapter 9. Control 187

Reading 1

2. What about this program?

2LESS EXEC

/* Example: use of a control variable */
do count = 10 by -2 to 6

say count
end
say IINow we have reached ll count

3. How many lines will this program "say"?

3HUP EXEC

/* Example: use of a control variable */
do j = 10 to 8

say IIHup! Hup! HUp!1I
end

4. How many lines will this program "say"?

4NOW EXEC

/* Example: use of a control variable */
do NOW = 1

end

if NOW = 9 then exit
say NOW

188 VM/SP System Product Interpreter User's Guide

/

Reading 1

Answers:

1. The control variable is changed at the bottom of the loop. The test for leaving
is made after this. So the control variable will be beyond the limit value.

2
3
N ow we have reached 4

2. If exprb is negative, count down:

10
8
6
Now we have reached 4

3. None ("10" already exceeds "8").

4. Eight, (on the ninth pass, the EXIT instruction ends the program before the
SAY instruction is reached).

You have just completed Step 19.

Chapter 9. Control 189

Reading 1

Conditional Loops: The LEAVE Instruction
Conditional loops continue to be executed so long as some condition is satisfied.
The simplest way to code these loops is to use DO FOREVER and LEAVE.

DO FOREVER

if ...

then LEAVE

END

The instruction

LEAVE

True

nstruction 1
nstruction2
nstruction3

False nstruction4
nstruction5
nstruction6

causes processing to continue with the instruction following the END keyword. For
example, the SUM EXEC in Figure 72 will continue executing as long as the user
enters a number. If you do not enter a number, the LEAVE instruction is executed
and processing continues with the SAY instruction.

/* This program adds up the numbers that the user is */
/* invited to enter. When the user enters something */
/* that is not a number, a message is displayed and */
/* the program ends */
total = 0
do forever

end

say "Enter a number"
pull n
if ~datatype(n,NUMBER) then leave
total = total + n
say "Total = II total

say III lin II I is not a number. Returning to eMS. II

Figure 72. SUM EXEC

190 VM/SP System Product Interpreter User's Guide

Conditional Loops: The DO WHILE Instruction

END

True instruction1
instruction2
instruction3

To build a conditional loop with the test at the top, use:

DO WHILE exprw
instruction!
instruction2
instruction3

END

where:

Reading 1

exprw (expression fo-r while) is an expression that, when evaluated, must give a
result of "0" or '1'.

Chapter 9. Control 191

Reading 1

In some cases, it is easiest to design with the test at the top. If so, you should use
the DO WHILE instruction.

These two fragments will produce the same results.

DO WHILE ---, finished
instructionl
instruction2
instruction3

END

or

DO FOREVER

END

if finished then LEAVE
instructionl
instruction2
instruction3

Conditional Loops: The DO UNTIL Instruction

DO UNTIL

END

nstruction 1
nstruction2
nstruction3

False

To build a conditional loop with the test at the bottom, use:

DO UNTI L expru
instructionl
instruction2
instruction3

END

192 VM/SP System Product Interpreter User's Guide

Reading 1

where:

expru (expression for until) is an expression that, when evaluated, must give a
result of "0" or "1".

In some cases, it is easiest to design with the test at the bottom. If so, you should
use the DO UNTIL instruction.

These two fragments will produce the same results.

DO UNTIL finished
instruction!
instruction2
instruction3

END

or

DO FOREVER
instruction!
instruction2
instruction3
if finished then LEAVE

END

Conditional Loops: The Choice
There are three kinds of conditional loops:

1. The decision is made before processing starts. For example, this program will
fill BATH. But if BATH is already full, the body of the loop will not be
executed and no water will be added.

DO WHILE bath < full
bath = bath + bucket

end

2. The decision is made after the first pass through the loop and again after every
subsequent pass. For instance, requesting valid data from a user.

DO UNTIL datatype(input,NUMBER)
say "Enter a number"
pull input

end

Chapter 9. Control 193

Reading 1

3. The decision is made during each pass. For instance, the decision to leave might
depend on information obtained during the loop.

DO FOREVER instruction
DO FOREVER

end

say IIEnter an item of data. When there isll,
II no more data, enter QUIP

pull answer
if answer = IIQUIT II then leave

/* process the data */

Later, we shall see that a program that reads data from a file should also be
programmed using DO FOREVER and LEAVE.

Note: Be careful about the condition for repeating the loop. For WHILE, the
condition must be TRUE; for UNTIL, it must be FALSE.

Did You Understand That?
I. What kind of DO instruction would you use to code the sequence:

Job done?
instruction 1
instruction2
instruction3

Job done?
instruction!
instruction2
instruction3

Job done?

Job done?

2. What kind of DO instruction would you use to code the sequence:

instructi on!
instruction2
instruction3

Job done?
instruction!
instruction2
instruction3

Job done?

Job done?

194 VM/SP System Product Interpreter User's Guide

Reading 1

Answers:

1. DO WHILE job --, = done (The first operation is to test "Is job done?")

2. DO UNTIL job = done (The first operation is to execute the list of
instructions.)

You have just completed Step 20.

Reading 1 continues in "The EXIT Instruction" on page 200.

Chapter 9. Control 195

Reading 2

Compound DO Instructions
Reading 2

You can combine one repetitive phrase and one conditional phrase in a single DO
instruction. You should know where in the loop the counters are updated and where
the tests for leaving the loop will be made. This is explained in a diagram in your
VMjSP System Product Interpreter Reference. (You can find it under the description
of the DO instruction.)

Compound DO instructions can do a lot of useful work. This next example shows
how a simplified version of the POS() function might be implemented as a REXX
function.

/* Example: the POSN() function is similar to the */
/* POSe), except that the third argument (llstart") */
/* is not allowed */

if argO ...,= 2
then return /* wrong number of arguments */

if arg(l,omitted)
then return

arg(2,omitted)
/* argument was omitted

parse arg needle,haystack

*/

last = length(haystack), /* compute the rightmost */
-length(needle)+l /* position that needle could */

/* be found in */

do result = 1 to last, /* Search for needle */
until substr(haystack,result,length(needle» = needle

end
if result> last then result = 0
return result

Figure 73. POSN EXEC

Leaving a Specified Loop
Sometimes a program is constructed of loops within loops. When you leave a loop,
you would like to tell the interpreter which loop you want to leave. To do this, give
a DO loop a name (that is, specify a control variable in the DO instruction). If the
loop does not contain a control variable already, invent one. For example

DO outer = 1

END

is the same, for all practical purposes, as DO FOREVER. In this example, outer is
the control variable for the loop. ,/

196 VM/SP System Product Interpreter User's Guide

Reading 2

Now, to leave a specific loop, put the name of its control variable after the keyword
LEAVE. For example:

DO outer = 1

do until datatype(answer,WHOLE)
say "Enter a number. ",

"When you have no more data, enter a blank line"
pull answer
if answer = "" then leave outer

end

/* process answer */
end
/* come here when there is no more data */

Reading 2 continues in "Subroutines" on page 201.

Chapter 9. Control 197

Reading 3

The ITERATE Instruction
Reading 3

To bypass all remaining instructions in the loop and test the ending conditions, use
the ITERATE instruction. Like LEAVE, ITERATE can be introduced by a THEN
or ELSE keyword. But, instead of leaving the loop altogether, the interpreter
proceeds with the operations usually done at the bottom of the loop. If an UNTIL
condition has been specified, it is tested; if a control variable has been specified, it is
incremented and tested; and if a WHILE condition has been specified, it is tested.

If tests indicate that the loop is still active, normal processing then continues from
the top of the loop.

For example:

DO j = 1 to limit by delta
instructionl
instruction2
if ...
then do

instruction3
instruction4
ITERATE j

end
instruction5
instruction6

END;

198 VM/SP System Product Interpreter User's Guide

instruction3
instruction4
ITERATE j

Reading 3 continues in "Jumps" on page 212.

Reading 3

Chapter 9. Control 199

Reading 1

The EXIT Instruction

Reading 1 covers the entire "EXIT Instruction" section. It describes:

• How to leave your program by using the EXIT instruction.

Reading 1

To tell the interpreter to leave your exec use:

EXIT [expression]

If your exec was started by typing its name on the command line:

• EXIT will take you back to CMS.

• express i on must result in a whole number, which CMS will display as a return
code in the Ready message.

F or example:

/* Example: using EXIT with a return code */
say "Returning to eMS"
exit 22

Figure 74. FADE EXEC

When run, the program in Figure 74 will cause this to be displayed:

fade
Returning to eMS
Ready(eee22);

Reading 1 continues in "Subroutines" on page 201.

200 VM/SP System Product Interpreter User's Guide

Subroutines

Reading 1

In this section:

immediately following, describes:

• The idea of a subroutine

• The CALL instruction

• How to obtain the arguments passed to a subroutine:

Using the ARG() function
Using the ARG instruction
U sing the PARSE ARG instruction

• The RETURN instruction.

Reading 1

Reading 2 on page 209, describes:

• Subroutines and functions

- What are the differences
- What are the similarities

• Parsing the arguments

• External subroutines.

The Idea of a Subroutine
Reading 1

A subroutine is a separate piece of code that can be called from more than one place
in your main program.

Subroutines can be in the same file as the main program, or they can be in a
separate EXEC file. The diagram shows a subroutine that is in the same file as the
main program.

Chapter 9. Control 201

Reading 1

CALL mysub

Main program

EXIT

MYSUB:

Subroutine

RETURN

A CALL instruction will cause the interpreter to look through your program until it
finds the label that marks the start of the subroutine. Processing continues from
there until the interpreter finds a RETURN instruction that causes the interpreter to
return to the main program.

A subroutine can be called from more than one place in a program. The interpreter
always returns to the clause following the CALL instruction from which it came.

Each CALL instruction can supply data, called arguments, which the subroutine can
use when called. In the subroutine, you can find out what data has been supplied by
using the ARG() function or the ARG instruction.

202 VM/SP System Product Interpreter User's Guide

/
I

Reading 1

The CALL Instruction
To direct the interpreter to execute a subroutine use:

CALL subname [argument!, argument2 ... J

where:

subname

argument!, etc.

is the name of the subroutine. The interpreter will first search
for the corresponding label in your program. A label consists
of a symbol followed by a colon (:), for example:

subname:

If no such label is found, the interpreter looks for a built-in
function, exec file, or module file of that name. (To be
discussed later, on page 213.)

are expressions. The value of each is computed, and can be
obtained in the subroutine by using the ARG() function.

ARG(I) returns the first argument
ARG(2) returns the second argument

You can have up to 10 arguments on a CALL instruction.

You can also obtain the arguments by using the ARG or
PARSE ARG instructions, discussed later.

Chapter 9. Control 203

Reading 1

For example:

/* Example: calling
do 3

call
call
call
call
say

end

triple
triple
triple
triple

say IIR ••• ! II
say liE ••• ! II
say IIX ••. ! II
say IIX ••• ! II
say
say IIREXX!II

"R"
II E"
"X II
"XII

a subroutine */

exit /* end of main program */
/*----------------------~-------------------------------*/
/* Subroutine to repeat a shout three times */
/* == */
/* The first argument is displayed on the screen, three */
/* times on one line, with suitable punctuation. */
/*--*/
TRIPLE:
say a rg (1) II , II a rg (1) II , II a rg (1) II ! II
return

Figure 75. CHEER EXEC

This is what appears on the screen is:

cheer
R, R, R!
E, E, E!
X, X, X!
X, X, X!

R, R, R!
E, E, E!
X. X, X!
X, X, X!

R, R, R!
E, E, E!
X, X. XI
X, X. X!

R ••• !
E. •• !
X ... !
X .•. !

REXX!
Ready;

204 VM/SP System Product Interpreter User's Guide

Reading 1

The EXIT instruction causes a return to CMS. In the program shown in Figure 75,
the EXIT instruction stops the main program from running on into the subroutine.

The ARG Instruction
In your subroutine, you may want to refer to an argument many times; if so, it
would make your program easier to read if the argument had a memorable name,
rather than just ARG(1). To assign the arguments to variables, use the PARSE
ARG instruction or the PARSE UPPER ARG instruction.

For example, if you want the results of the four expressions on the call instruction to
be assigned FLOUR, BUTTER, SUGAR, and COOKIES, you could write:

PARSE ARG flour, butter, sugar, cookies

The other form of the instruction, PARSE UPPER ARG, can be shortened to ARG.
If you wanted the four arguments to be translated to uppercase you could write:

ARG flour, butter, sugar, cookies

Notice that, just as there are commas between the expressions in the CALL
instruction, so there are commas between the symbols in the PARSE ARG or ARG
instruction when it is used in this way.

The RETURN Instruction

Example

The RETURN instruction takes you back to the main routine. Processing continues
with the instruction following the CALL. The full form of the instruction is

RETURN [expression]

where, if express i on is specified, it will be assigned to the REXX special variable,
RESULT. (But if express i on is omitted, RESULT is "dropped". That is,
RESULT is not assigned a value and thus, when used in an expression, takes on the
value of itself, translated to uppercase (RESULT).

The variable RESULT can be used in an expression by the calling program when it
resumes.

This example shows how CALL passes arguments to a subroutine; ARG assigns the
arguments' values to variables; RETURN assigns a value to RESULT; and the main
program uses this data.

Chapter 9. Control 205

Reading 1

MAKE BOX EXEC

long = 1; wide = 2; high = 1.5 /* the size of the box */
/* required (meters) */

CALL box long, wide, high
I L-...L-...'L---------,

~
----'say "Material required =" result,

"square meters"

EXIT

~.
BOX:
/* Computes area of material */
/* required for making a box, */
/* with no lid. Arguments are: */
/* 1. length * /
/* 2. width */
/* 3. height */

+ + ~
ARG length, width, height

area= length*width,
+ 2*width*height,
+ 2*length*height

RETURN area
, I

/* base */
/* short sides */
/* long sides */

When to Leave Out the Arguments
If program variables are referred to by the same names both outside and inside an
internal routine (a routine that exists in the same file as the CALL instruction), it is
not necessary to include them as arguments on the CALL or ARG instructions.

However, not including them could make it more difficult for a person reading your
program to understand what your subroutine does. So it will be especially important
in this case to give a list of the arguments in the comments that introduce the
subroutine.

206 VM/SP System Product Interpreter User's Guide

/

Reading 1

Did You Understand That?
1. This program simulates a children's race game, of the kind that used to be

played with dice.

Write the subroutine TELL to tell who is winning.

RACEGAME EXEC

/* Example of a subroutine: a child's race game */
a = 0 /* Arthur starts from zero */
b = 3 /* Barry gets a headstart of 3 */
do 15

a = a + random(l,6)
call tell
b = b + random(l,6)
call tell

/* Arthur gets first turn */
/* Who's ahead now */
/* Now it's Barry's turn */
/* Who's ahead now */

end
exit /* End of main program */

2. Copy the main program and your subroutine into an exec file and test your
program.

Answers:

1. A possible solution is:

/*--*/
/* Subroutine to display the position */
/* ================================== */
/* INPUT: a (Arthur's score) */
/* b (Barry's score) */
/* RESULT: displayed on user's screen */
/*--*/
TELL:
values = "Arthur =" a "; Barry =" b "; II

select
when a > b then say values "Arthur is ahead"
when b > a then say values "Barry is ahead"
otherwise say values "Neck and neck!1I

end
return

In this sample solution, there are no arguments on the CALL instruction.
Nevertheless, a person reading the program will still need to know what data the
subroutine is using.

Chapter 9. Control 207

Reading 1

A well-designed subroutine will operate on a clearly defined set of data. To
make your program more readable, you should define this data in comments at
the beginning of the subroutine.

You have just completed Step 21.

Reading 1 continues in "Jumps" on page 212.

208 VM/SP System Product Interpreter User's Guide

Subroutines and Functions
Reading 2

Reading 2

You can write your own subroutines (described earlier) and your own functions.
You can also use subroutines and functions written by other people.

What are the differences between subroutines and functions, and what do they have
in common?

The differences are:

• To call a subroutine, you use a CALL instruction:

CALL routine [argumentl, ...]

But to call a function, you use a function call:

routine([argumentl, ...])

• A subroutine need not return a result, but a function must return a result. In a
subroutine, you can write:

RETURN

But in a function you must at least write:

RETURN"" /* This returns a null string */

• A subroutine sets the value of the special variable RESULT. But the result
returned by a function is used in the expression where the function call
appeared.

The similarities are:

• Both use the ARG and PARSE ARG instructions, and the ARG() function, for
obtaining the values of their arguments.

• Both can be either internal (that is, starting with a label in the same file as the
CALL instruction or the function call) or both can be external (that is, in a
different file).

• Both have the same search order. When a call to routine is recognized, the
interpreter searches for:

1. The label routi ne: in the same file
2. A REXX function called routine
3. An external routine.

(For full details, see your VM/SP System Product Interpreter Reference.)

• Both, when they are internal, can use the PROCEDURE instruction (described
in Reading 3, page 29).

• Where it is reasonable to do so, functions can be used as subroutines.
Subroutines that return a result can be used as functions.

Chapter 9. Control 209

Reading 2

Using a Call of the Other Kind
Where convenient, programs designed as functions can be called as subroutines.
And, if they always return a result, programs designed as subroutines can be called
as functions.

For example, the subroutine QUIET, which we discussed on page 129, could be
called as a function:

if quiet("STATE" fn ft) = 0
then •••

and the POSe) function could be called as a routine:

/* to remove NEEDLEs from haystack */
do forever

call pos needle,haystack
if result = (:)
then leave
else haystack = delstr(haystack,result,length(needle»

end

Note: : DELSTR() is a REXX built-in function. See your VM/SP System Product
Interpreter Reference for details.

Parsing the Arguments
Each of the arguments passed by a CALL instruction can be parsed using the
PARSE ARG instruction or the ARG instruction. For example, the instruction:

CALL words "a string of words",5

might be parsed using:

WORDS:
PARSE ARG first second third fourth rest, number

The result would be that:

FIRST gets "a"
SECOND gets "string"
THIRD gets "of'
FOURTH gets "words"
REST gets ""
NUMBER gets "5"

210 VM/SP System Product Interpreter User's Guide

Reading 2

External Subroutines
When we first discussed subroutines, we mentioned only the internal routines. But
subroutines can also exist as a separate exec file.

CALL mysub

--

r
MYSUB EXEC

/* * /

RETURN

In an external routine, the variables belonging to the caller are not available to the
subroutine. All the data must be formally passed, using arguments on the CALL
instruction, and all the data must be returned using the RETURN instruction. (If
necessary, the calling routine can PARSE the variable RESULT into a number of
variables.)

You have just completed Step 36.

Reading 2 continues in "Jumps" on page 212.

Chapter 9. Control 211

Reading 1

Jumps

Reading 1

In this section we discuss instructions that cause the interpreter to continue
processing at a different point in your program.

In this section:

immediately following, describes:

• Using the SIGNAL instruction for "jumps."

Reading 2 on page 213, describes:

• How to use the SIGNAL instruction for abnormal changes of control.

Reading 3 on page 214, describes:

• How to use the SIGNAL instruction to set "ON-conditions."

The SIGNAL Instruction
Reading 1

SIGNAL ON FAILURE
SIGNAL ON HALT
SIGNAL ON NOVALUE
SIGNAL ON SYNTAX.

The SIGNAL instruction can jump (that is, transfer control) to another part of your
program.

If your SIGNAL instruction is in the middle of a program, the interpreter forgets all
about the SELECT constructs and DO loops you were in; therefore, you cannot
jump back into or jump around within a DO loop. This usually means that you can
only use SIGNAL for an abnormal end. For other purposes, it is better to construct
your jumps using IF, SELECT, or DO, as described earlier.

Reading 1 continues in Chapter 10, "Programming Style and Techniques" on
page 215.

212 VMjSP System Product Interpreter User's Guide

The SIGNAL Instruction
Reading 2

Reading 2

To tell the interpreter to go to another part of the same file, use the SIGNAL
instruction:

SIGNAL label

This causes a jump to the specified label. A label consists of a symbol followed by a
colon (:). The interpreter searches from the top of the file for the clause:

LABEL:

Processing continues from there.

Here is an example of an abnormal end using SIGNAL. The SIGNAL instruction
always stores its own line number in the REXX special variable SIGL.

SIGNAL abend

EXIT /* end of ordinary code */
/*--*/
/* This code handles abnormal ends */
/*--*/
ABEND:
say "Abnorma1 end signalled at 1ine" sig1,
I I". Cannot continue."

exit

The first EXIT instruction is put there to stop the normal program from running on
into the "abnormal end" routine.

Reading 2 continues in Chapter 10, "Programming Style and Techniques" on
page 215.

Chapter 9. Control 213

Reading 3

SIGNAL ON Condition
Reading 3

To set up a "trap" so that the interpreter, whenever a specified condition is detected,
will jump to the corresponding label, use:

SIGNAL ON { ERROR }
FAILURE

HALT
NOVALUE
SYNTAX

where:

SIGNAL ON ERROR has already been discussed. Refer to page 126.

The others work in a similar way, jumping to their own label when the condition is
detected, and setting the REXX special variable SIGL.

SIGNAL ON FAILURE

SIGNAL ON HALT

SIGNAL ON NOVALUE

SIGNAL ON SYNTAX

sets up a "trap" to the label FAILURE that is taken
whenever a failure condition from a host command is
detected (that is, a negative return code is returned). For
example, a failure condition would occur if a command
could not be found. This can be useful for debugging
commands that would probably cause the program to stop
running.

sets up a "trap" to the label HALT that is taken whenever
the CMS immediate command HI (Halt Interpretation) is
issued from the CMS command line. This command works
in a similar way to HX, but it does not force a return to
CMS. This can be useful when debugging a REXX
program under XEDIT. You can halt the REXX program
without aborting the whole XEDIT session.

sets up a "trap" to the label NOVALUE that is taken
whenever a symbol that could be the name of a variable is
encountered, and the variable does not exist. This can be
useful for checking a program that is coded in the more
reliable style, with all strings that are not numbers in
quotes.

sets up a "trap" to the label SYNTAX that is taken
whenever a syntax error is detected. This might be useful
for debugging a system program written in REXX when a
user complains that the program gives syntax errors, but is
not able to produce an accurate description of the problem.

Congratulations! You have successfully completed Reading 3. N ow you can try
putting your REXX skills into action.

If you want more practice with writing REXX programs, you can review
Chapter 10, "Programming Style and Techniques" on page 215.

214 VM/SP System Product Interpreter User's Guide

Reading 1

Chapter 10. Programming Style and Techniques

Reading 1

The method you use for constructing your programs is just as important as the
language you use to write them.

In this chapter:

immediately following, describes:

• Consider the data

• Happy hour with a real program.

Reading 2 on page 220, describes:

• Designing a program: stepwise refinement

• Correcting your program

• Coding style.

Consider the Data
Reading 1

When you are faced with the task of writing a program, the first thing to consider is
the data you are required to process. Make a list of the input data - what are the
items and what are the possible values of each? If the items have a kind of structure
or pattern, draw a diagram to illustrate it. Then do the same for the output data.
Study your two diagrams and try to see if they fit together. If they do, you are well
on the way to designing your program.

Next, write the specification that the user will use. This might be a written
specification, a HELP file or both.

Last of all, write your program.

Here is a little example:

You are required to write an interactive program that invites the user to play
"Heads or tails." The game can be played as long as the user likes. To end the
game the user should reply "Quit" in answer to the question "Heads or tails?"
The program is arranged so that the computer always wins.

Think about how you would write this program.

Chapter lO. Programming Style and Techniques 215

Reading 1

The computer starts off with:

Let's playa game! Type "Heads", "TailS",
or "Quit"
and press ENTER.

This means that there are four possible inputs:

• HEADS
• TAILS
• QUIT
• N one of these three.

And so the corresponding outputs should be:

• Sorry. It was TAILS. Hard luck!
• Sorry. It was HEADS. Hard luck!
• Ready;
• That's not a valid answer. Try again!

And this sequence must be repeated indefinitely, ending with the return to eMS
(Ready;).

Now that you understand the specification, the input data and the output data, you
are ready to write the program.

If you had started off by writing down some instructions without considering the
data, it would have taken you longer.

216 VM/SP System Product Interpreter User's Guide

Reading 1

Did You Understand That?

Happy Hour

1. Write the program. If you are careful, it should run the first time!

Answers:

1.

CON EXEC

/* Tossing a coin. The machine is lucky, not the user */

do forever
say IILet's playa game! Type 'Heads ' , 'Tails 'll ,

lIor 'Quit' and press ENTER.II
pull answer

select

end
say

end

when answer = IIHEADS II
then say IISorry! It was TAILS. Hard luck!1I

when answer = IITAILS II
then say IISorry ! It was HEADS. Hard 1 uck! II

when answer = IIQUIT"
then exit

otherwise
say IIThat's not a valid answer. Try again!1I

You have just completed Step 22.

As this is the end of Reading 1, here is a chance to relax.

This is a very simple arcade game. Type it in and play it with your friends. Later
on, you may want to improve it. (yIe shall discuss this at the end of the second
reading.)

Chapter 10. Programming Style and Techniques 217

Reading 1

/* The user says where the mouse is to go. But where */
/* will the cat jump? */

say "This is the mouse ----------> @"
say "These are the cat's paws ---> ()"
say "This is the mousehole ------> a"
say "Thi sis a wall -------------> I"
say
say "You are the mouse. You win if you reach",

lithe mousehole. You cannot go pastil
say lithe cat. Wait for him to jump over you.",

"If you bump into him you're caught!"
say
say liThe cat always jumps towards you, but he's not",

livery good at judging distances."
say "If either player hits the wall he misses a turn"
say
say "Enter a number between 0 and 2 to say how far to",

lithe right you want to run."
say "Be careful, if you enter a number greater than 2 then",

lithe mouse will freeze and the cat will move!"
say

/*--*/
/* Parameters that can be changed to make a different */
/* game * /
/*--*/
len = 14 /* length of corridor */
hole = 14 /* position of hole */
spring = 5 /* maximum distance cat can jump */
mouse = 1 /* mouse starts on left */
cat = len /* cat starts on right */
/*--*/
/* Main program */
/*--*/
do forever

ca 11 di spl ay
/*---*/
/* Mouse's turn */
/*---*/
pull move
if datatype(move,whole) & move >= 0 & move <= 2
then select

when mouse + move> len then nop
when cat > mouse,

& mouse + move >= cat

Figure 76 (Part 1 of 2). CATMOUSE EXEC

/* hits wall */

/* hits cat */
/* continued */

218 VM/SP System Product Interpreter User's Guide

then mouse = cat
otherwise /* moves */
mouse = mouse + move

end
if mouse = hole then leave /* reaches hole */
if mouse = cat then leave /* hits cat */
/*---*/
/* Cat's turn */
/*---*/
jump = random(l,spring)
if cat> mouse then do /* cat tries to jump left */

if cat - jump < 1 then nop /* hits wall */
else cat = cat - jump

end
else do /* cat tries to jump right */

if cat + jump> len then nop /* hits wall */
else cat = cat + jump

end
if cat = mouse then leave

end
/*--*/
/* Conclusion */
/*--*/
call display
if cat = mouse then say "Cat wins"
else say "Mouse wins"
exit
/*--*/
/* Subroutine to display the state of play */
/* */
/* Input: CAT and MOUSE */
/* */
/* Design note: each position in the corridor occupies */
/* three character positions on the screen. */
/*--*/
display:
corridor = copies(" ",3*len) /* corridor */
corridor = overlay(10",corridor,3*hole-l) /* hole */

if mouse ~= len /* mouse in hole? */
then corridor = overlay(II@II,corridor,3*mouse-l)/* mouse */

corridor = overlay("(I,corridor,3*cat-2)
corridor = overlay(I)",corridor,3*cat)
say II I"corridor"l"
return

Figure 76 (Part 2 of 2). CATMOUSE EXEC

You have just completed Step 23.

/* cat */

Reading 1

Congratulations! You have also successfully completed Reading 1. Now, maybe you
want to take a while to put your new skills into action, or maybe you want to start
right in with the second reading.

Reading 2 begins in Chapter 2, "How Your Program Is Interpreted" on page 9.

Chapter 10. Programming Style and Techniques 219

Reading 2

Designing a Program
Reading 2

Still thinking about method, which is just as important as language, let us take
another look at CATMOUSE EXEC.

The program is about a cat and a mouse and their positions in a corridor. At some
stage their positions will have to be pictured on the screen. The whole thing is too
complicated to think about all at once; the first step is to break it down into:

1. Main program: calculate their positions, and
2. Display subroutine: display their positions.

Now let us look at main program. The user (who plays the mouse) will want to see
where everybody is before making a move. The cat will not. The next step is to
break the main program down further, into:

Do forever
call Display
Mouse's move
Cat's move

end
Conclusion

Methods for Designing Loops

The Conclusion

The method for designing loops is to ask two questions:

• Will it always terminate?
• Whenever it terminates, will the data meet the conditions required?

Well, the loop terminates (and the game ends) when:

1. The mouse runs to the hole.
2. The mouse runs into the cat.
3. The cat catches the mouse.

At the end of the program, the user must be told what happened.

call display
say who won

220 VM/SP System Product Interpreter User's Guide

/'
/

What Do We Have So Far?
Putting all this together, we have:

/*--*/
/* Main program */
/*--*/
do forever

call display
/*---*/
/* Mouse's turn */
/*---*/

if mouse = hole then leave /* reaches hole */
if mouse = cat then leave /* hits cat */
/*---*/
/* Cat's turn */
/*---*/

if cat = mouse then leave
end

/*--*/
/* Conclusion */
/*--*/
call dis play
if cat = mouse then say "Cat wins"
else say "Mouse wins"
exit

/*--*/
/* Subroutine to display the state of play */
/* */
/* Input: CAT and MOUSE */
/* */
/*--*/
display:

Reading 2

The method that we have just discussed is sometimes called stepwise refinement.
You start with a specification (which may be incomplete). Then you divide the
proposed program into routines, such that each routine will be easier to code than
the program as a whole. Then you repeat the process for each of these routines until
you reach routines that you are sure you can code correctly at the first attempt.

While you are doing this, keep asking yourself two questions:

• What data does this routine handle?

• Is the specification complete?

Chapter 10. Programming Style and Techniques 221

Reading 2

Stepwise Refinement: An Example
Granny is going to knit you a warm woolen garment to wear when you go sailing.
This is what she might do.

1. Knit front
2. Knit back
3. Knit left arm
4. Knit right arm
5. Sew pieces together.

Each of these jobs is simpler to describe than the job of knitting a pullover. In
computer jargon, breaking a job down into simpler jobs is called stepwise refinement.

At this stage, look at the specification again. A sailor might need to put on the
pullover in the dark, quickly, without worrying about the front or back. Therefore,
the front should be the same as the back; and the two sleeves should also be the
same. This could be programmed:

do 2
CALL Knit_body_panel

end

do 2
CALL Knit_s 1 eeve

end

Figure 77. PULLOVER EXEC

In programming, the best method is to go on refining your program, working from
the top, until you get down to something that is easy to code.

"Top down" is the best approach.

Consider the Data
When you are refining your program, your objective is to make each piece simpler.
This almost certainly means:

• Simpler input data for each segment or routine
• Simpler output data for each segment or routine
• Simpler processing
• And, therefore, simpler code.

If your pieces really are simpler, they will probably have simpler names, too. For
instance:

• Knit cuff

rather than

• Make ribbing for cuffs and waistband

You have just completed Step 37.

222 VM/SP System Product Interpreter User's Guide

/

Reading 2

Correcting Your Program
If you cannot understand why your program is giving wrong results, you can:

o Modify your program so that it tells you what it is doing

• Use some of the REXX interactive trace facilities (See "Tracing" on page 39).

You will gradually learn which of these techniques suits you better.

Modifying Your Program
You can put extra instructions into your program, such as:

say "Checkpoint A. x =" x

say "End of first routine"

Tracing Your Program
Or you can use the TRACE instruction, described in your VMjSP System Product
Interpreter Reference.

o To find out where your program is going, use TRACE Labels. The example
shows a program and the trace it gives on the screen.

/* Example: i two iterations of wheel, six iterations */
/* of cog. On the first three iterations, "x < 2" */
/* is true. On the next three, it is false. */
trace L
do x = 1 to 2
wheel:

do 3
cog:

if x < 2 then do
true:

end
else do

false:

end
end
done:

end

Figure 78. ROTATE EXEC

Chapter 10. Programming Style and Techniques 223

Reading 2

Coding Style

This gives the trace:

rotate
6 *-* wheel:
8 *-* cog:

10 *-* true:
8 *-* cog:

10 *-* true:
8 *-* cog:

10 *-* true:
6 *-* wheel:
8 *-* cog:

13 *-* false:
8 *-* cog:

13 *-* false:
8 *-* cog:

13 *-* false:
17 *-* done:

Ready;

• To see how the interpreter is computing expressions, use TRACE Intermediates.

• To find out whether you are passing the right data to a command or subroutine,
use TRACE Results.

• To make sure that you get to see nonzero return codes from commands, use
TRACE Errors.

The only sure way of finding out whether a program is correct is to read it.
Therefore, programs must be easy to read. Naturally, "easy to read" means different
things to different programmers. All we can do here is to give examples of different
styles, and leave you to choose the style you prefer.

A very good way to get your program checked is to ask a coworker to read it. Be
sure to choose a coding style that your coworkers find easy to read.

Most people would find the following program fragment difficult to read.

224 VM/SP System Product Interpreter User's Guide

/**/
/* SAMPLE #1: A portion of CATMOUSE EXEC (Page 218), */
/* not divided into segments and written with no */
/* indentation, and no comments. This style is not */
/* recommended. */
/**/

do forever
call display
pull move
if datatype(move,whole) & move >= 0 & move <=2
then select
when mouse+move > len then nop
when cat > mouse,
& mouse+move >= cat,
then mouse = cat
otherwise
mouse = mouse + move
end
if mouse = hole then leave
if mouse = cat then leave
jump = random(l,spring)
if cat> mouse then do
if cat-jump < 1 then nop
else cat = cat-jump
end
else do
if cat+jump > len then nop
else cat = cat+jump
end
if cat = mouse then leave
end
call display
if cat = mouse then say "Cat wins"
else say "Mouse wins"
exit

Reading 2

This next example is easier to read. It is divided into segments, each with its own
h~ading. The comments on the right are sometimes called remarks. They can help
the reader get a general idea of what is going on.

Chapter 10. Programming Style and Techniques 225

Reading 2

/**/
/* SAMPLE #2: A portion of CATMOUSE EXEC (Page 218), */
/* divided into segments and written with Isome l */
/* indentation and Isome l comments. */
/**/

/**/
/* Main program */
/**/
do forever

call display
/***/
/* Mouse's turn */
/***/
pull move
if datatype(move,whole) & move >= e & move <=2
then select

end

when mouse+move > len then nop
when cat > mouse,

& mouse + move >= cat,
then mouse = cat
otherwise
mouse = mouse + move

if mouse = hole then leave
if mouse = cat then leave,

/* hits wa 11 * /

/* hits cat */

/* moves */

/* reaches hole */
/* hits cat */

/**/
/* eat's turn */
/**/
jump = random(l,spring)
if cat> mouse then do /* cat tries to jump left */

if cat - jump < 1 then nop /* hits wall */
else cat = cat - jump

end
else do /* cat tries to jump right */

if cat + jump> len then nop /* hits wall */
else cat = cat + jump

end
if cat mouse then leave

end
/**/
/* Conclusion */
/**/
call display
if cat = mouse then say "Cat wins"
else say "Mouse wins"
exit

This next example has additional features that are popular with some programmers.
Keywords written in uppercase and a different indentation style highlight the
structure of the code; the abundant comments recall the detail of the specification.

226 VM/SP System Product Interpreter User's Guide

/**/
/* SAMPLE #3: A portion of CATMOUSE EXEC (Page 218), */
/* divided into segments and written with Imorel */
/* indentation and Imorel comments. */
/* Note commands in uppercase (to highlight logic) */
/**/

/**/
/* Main program */
/**/
DO FOREVER

CALL display
/**********************************/
/* Mouse's turn */
/**********************************/
PULL move
IF datatype(move,whole) & move >= 8 & move <=2

THEN SELECT
WHEN mouse+move > len

THEN nop
/* mouse hits wall */
/* and loses turn */

WHEN cat > mouse,
& mouse+move >= cat, /* mouse hits cat */

THEN mouse = cat /* and loses game */
OTHERWISE mouse = mouse + move /* mouse .•. */

END /* moves to new location */
IF mouse = hole THEN LEAVE /* mouse is home safely */
IF mouse = cat THEN LEAVE /* mouse hits cat (ouch) */
/**********************************/
/* Cat's turn */
/**********************************/
jump = RANDOM(l,spring) /* determine cat's move */
IF cat> mouse /* cat must jump left */

THEN DO
IF cat-j ump < 1 /* cat hits wall

THEN nop /* misses turn
ELSE cat = cat-jump /* cat jumps left

END
ELSE DO /* cat must jump right

IF cat+jump > len /* cat hits wall
THEN nop /* misses turn
ELSE cat = cat+jump /* cat jumps right

END
IF cat = mouse THEN LEAVE

END
/* cat catches mouse

/*continued*/

*/
*/
*/

*/
*/
*/
*/

*/

Reading 2

Chapter 10. Programming Style and Techniques 227

Reading 2

/**/
/* Cone 1 us ion * /
/**/
CALL display /* on final display */

IF cat = mouse /* who won? */
THEN say "Cat wins" /* the cat */
ELSE say "Mouse wins" /* ... the mouse */

EXIT

Congratulations! You have successfully completed Reading 2. Now, maybe you
want to take a while to put your new skills into action, or maybe you want to start
right in with Reading 3.

You have just completed Step 38.

Reading 3 begins in Chapter 2, "How Your Program Is Interpreted" on page 9.

228 VMjSP System Product Interpreter User's Guide

Summary of Changes

Summary of Changes
for SC24-5238-04
for VM/SP Release 6

How to Obtain the Release 5 Edition of this Publication

To obtain the edition of this publication that pertains to Release 5 of VM/SP, order
STOO-1593.

New Built-in FUilctionsfor Release 6 of VM/SP

DIGITS

FUZZ

WORDPOS

Returns the current setting of NUMERIC DIGITS.

Returns the current setting of NUMERIC FUZZ.

Returns the word number of the first word of a given phrase
found in a given stri ng.

New Option Added to an Instruction for Release 6 of VM/SP

• SIGNAL instruction added the Failure option.

New Comparison Operators Addedfor Release 6 of VM/SP that include:

«

»

\«,-,«

\»,-,»

«=

»=

Other Changes

Strictly less than

Strictly greater than

Strictly not less than

Strictly not greater than

Strictly less than or equal to

Strictly greater than or equal to

Note: The backslash (\) is synonymous with the NOT
symbol (-,). The two may be used interchangeably.

• Restriction on the placement of the PROCEDURE statement is enforced.
The PROCEDURE instruction, if used, must be the first instruction
executed after the CALL or function invocation.

• New section added to the File Processing chapter, 'Processing Files in the
CMS Shared File System'.

• The backslash character(\) is supported as a synonym

Miscellaneous

• Minor changes to accommodate the CMS Shared File System (SFS) and
VM/XA.

• Minor technical and editorial changes have been made throughout this
publication.

Summary of Changes
for SC24-5238-03
for VM/SP Release 5

Miscellaneous

Minor technical and editorial changes have been made throughout this pUblication. This
edition supersedes the previous edition, SC24-5238-02.

Summary of Changes 229

Summary of Changes
for SC24-5238-02
for VM/SP Release 4

Miscellaneous

Minor technical and editorial changes have been made throughout this publication. This
edition supersedes the previous edition, SC24-5238-01.

Summary of Changes
for SC24-5238-01
for VM/SP Release 3

Miscellaneous

Minor editorial changes have been made throughout this publication. This edition does not
supersede the previous edition, SC24-5238-00.

230 VM/SP System Product Interpreter User's Guide

!

G~OSs8rrlf o111errms and Abbre"iations

A

argument. (1) A string passed between a calling routine
and a called routine. (2) A parameter provided to a
program.

argument list. A complete set of arguments, separated
by commas, that is passed between a calling routine and
a called routine.

arithmetic operator. Performs arithmetic operations on
character strings that are valid numbers. The arithmetic
operators include addition (+), subtraction (-),
multiplication (*), exponentiation (**), division (I),
integer division (%), remainder (1/), prefix +, and
prefix -.

assembler language. A source language that includes
symbolic machine language statements in which there is
a one-to-one correspondence with instruction formats
and data formats of the computer.

assignment. A single clause with the form symbol =
expression. An assignment gives a variable a new value.

buffer. An area of storage, temporarily ·reserved for
performing input or output, into which data is read, or
from which data is written.

built-in function. A function that is supplied by a
language. For REXX, these are functions defined as
part of the REXX language and include character
manipulation, conversion, and information functions.

byte. A unit of storage, consisting of eight adjacent
binary digits operated on as a unit and constitute the
smallest addressable unit in the system.

c
callable services library (CSL). A package of CMS
assembler routines that can be stored as an entity and
made available to application programs.

CC. Condition code.

character. A member of a set of elements that can
represent, organize, or control data. Characters may be
letters, digits, punctuation marks, or other symbols.

clause. An element of a REXX program consisting of
zero or more blanks (which are ignored), a sequence of

tokens, zero or more blanks (again ignored), and a
semicolon delimiter (which may be implied). Clauses
can be subdivided into five types: null clauses, labels,
assignments, instructions, and commands.

CMS. Conversational Monitor System.

CMS EXEC language. A general-purpose, high-level
programming language, particularly suitable for EXEC
procedures and EDIT macros. The CMS EXEC
processor executes procedures and macros (programs)
written in this language. Contrast with EXEC 2
language and Restructured Extended Executor (REXX)
language.

comma. (1) A token that represents the continuation
character. (2) A separator of arguments in an argument
list. (3) A separator in a parsing template.

command. Single clauses consisting of just an
expression. The expression is evaluated and the result is
passed as a command string to the default or specified
host environment.

comment. A token consisting of characters (on one or
more lines) delimited by /* and */. Comments can be
written anywhere in a REXX program.

comparison operator. Compares two terms and returns
the value' l' if the result of the comparison is true, or
'0' otherwise.

compound variable. A symbol that contains at least one
period, one character before the period, and one
character after the period. A compound symbol cannot
start with a digit or period.

concatenate. An operation to combine two strings into
one by appending the second string to the right-hand
end of the first string.

conditional loop. A loop that allows a set of
instructions to be repeated either WHILE or UNTIL a
specified condition is met.

conditional phrase. An expression evaluated as either
true or false and determines whether an instruction or
set of instructions are executed.

condition code (CC). A code that reflects the result of a
previous I/O, arithmetic, or logical operation.

console stack. Refers collectively to the program stack
and the terminal input buffer.

constant symbol. A symbol that starts with a digit (0-9)
or a period and whose value cannot be changed.

Glossary of Terms and Abbreviations 231

continuation character. A character represented by the
comma and lets a clause be extended onto more than
one line. This character is functionally replaced by a
blank and cannot be used in the middle of a string or
comment.

control program. A computer program that schedules
and supervises the program execution in a computer
system. See Control Program (CP).

Control Program (CP). A component of VM/SP that
manages the resources of a single computer so multiple
computing systems appear to exist. Each virtual
machine is the functional equivalent of an IBM
System/370.

Conversational Monitor System (CMS). A virtual
machine operating system and component of VM/SP
that provides general interactive time sharing, problem
solving, program development capabilities, and operates
only under the control of the VM Control Program
(CP).

CPo Control Program.

CP command. A command available to all VM users.
Class G CP commands let the general user reconfigure
their virtual machine, control devices attached to their
virtual machine, do input and output spooling functions,
and simulate many other functions of a real computer
console. Other CP commands let system operators,
system programmers, system analysts, and service
representatives manage the resources of the system.

D

DBCS. Double-byte character set.

double-byte character set (DBCS). A character set that
requires 2 bytes to uniquely define each character. This
contrasts with SBCS, in which each printed character is
represented by 1 byte.

E
EBCDIC. Extended binary-coded decimal interchange
code.

entry point. An address or label of an instruction
performed upon entering a computer program, a
routine, or a subroutine. A program can have several
different entry points, each corresponding to a different
function or purpose.

environment. A collection of logical and physical
resources. Examples of environments in VM/SP are CP
and CMS.

exec. In REXX, a file with a file type of EXEC that
contains REXX language instructions that are directly

232 VM/SP System Product Interpreter User's Guide

interpreted. Execs can also contain commands executed
by the host environment. For an exec to be recognized
as a REXX exec, the program must start with a
comment.

EXEC 2 language. A general-purpose, high-level
programming language, particularly suitable for EXEC
procedures and XEDIT macros. The EXEC 2 processor
runs procedures and XEDIT macros (programs) written
in this language. Contrast with CMS EXEC language
and Restructured Extended Executor (REXX) language.

expression. In REXX, a general mechanism for
combining one or more pieces of data in various ways to
produce a result, usually different from the original
data. Expressions consist of terms (literal strings,
function calls and symbols), and zero or more operators.

extended binary-coded decimal interchange code
(EBCDIC). A set of 256 characters, with each
character represented by 8 bits.

extended PLIST (untokenized parameter list). Four
addresses that indicate the extended form of a command
as it was entered at a terminal.

external routine. A program external to the user's
program, language processor, or both. These routines
can be written in any language (including REXX) that
supports the system dependent interfaces used by REXX
to invoke it.

F

!block. File block.

FIFO (first-in-first-out). A queuing technique in which
the next item to be retrieved is the item that has been
on the queue for the longest time. Contrast with LIFO
(last-in-Jirst-out) .

file block. The block pointed to by word 4 of the
extended parameter list. The file block can be used to
execute a program with a file type other than EXEC. It
can also be used to execute a program that is already is
storage or to override the default address environment.

file ID. A CMS file identifier that consists of a file
name, file type, and file mode. The file ID is associated
with a particular file when the file is created, defined, or
renamed under CMS. See file name,file type, andflle
mode.

file mode. A two-character CMS file identifier field
comprised of the file mode letter (A through Z)
followed by the file mode number (0 through 6). The
file mode letter indicates the minidisk or SFS directory
on which the file resides. The file mode number
indicates the access mode of the file.

file name. A one-to-eight character alphanumeric field,
comprised of A through Z, 0 through 9, and special
characters $ # @ + - (hyphen) : (colon) _ (underscore),
that is part of the eMS file identifier and serves to
identify the file for the user.

file type. A one-to-eight character alphanumeric field,
comprised of A through Z, 0 through 9, and special
characters $ # @ + - (hyphen) : (colon) _ (underscore),
that is used as a descriptor or as a qualifier of the file
name field in the CMS file identifier.

free storage. Storage not allocated. The blocks of
memory available for temporary use by programs or by
the system.

function. A series of instructions that an exec invokes
to perform a specific task and return a value. Three
types of routines can be called as functions: internal,
built-in, and external.

function call. An invocation of a set of instructions that
must return a result. Function calls can be included in
an expression anywhere that a term would be valid.

function package. A set of external functions and/or
subroutines which can be loaded into virtual storage.
The functions then seem like ordinary built-in functions
to users. Three supported function packages in REXX
are: RXUSERFN, RXLOCRN, RXSYSFN.

G

GCS. Group Control System.

Group Control System (GCS). A component of VM/SP,
consisting of a shared segment that the user can IPL
and run in a virtual machine. It provides simulated
MVS services and unique supervisor services to help
support a native SNA network.

H

HELP. An online tool for supplying reference
information on commands and messages for VM
components.

hexadecimal string. Any sequence of zero or more
hexadecimal digits (0-9, a-f, A-F), optionally separated
by blanks, delimited by single or double quotes, and
immediately followed by the symbol x or X.

immediate command. A type of eMS command that,
when entered after an attention interruption, causes
program execution, tracing, or terminal display to stop.
Another immediate command can be entered to resume
tracing or terminal display. The immediate commands
are HB (halt batch execution), HI (halt all System
Product Interpreter or EXEC 2 programs or macros),
HO (halt tracing), HT (halt typing), HX (halt
execution), RO (resume tracing), RT (resume typing),
SO (suspend tracing), TE (trace end), and TS (trace
start). They are called immediate commands because
they are executed as soon as they are entered; they are
not stacked in the console stack. Within an exec,
immediate commands can be established or cancelled by
the eMS command IMMCMD.

instruction. One or more clauses, the first of which
starts with a keyword that identifies the instruction.
Instructions affect the flow of control, provides services
to the programmer, or both.

interface. A shared boundary between two or more
entities. An interface might be a hardware or software
component that links two devices or programs together.

internal label. A label that is inside the user's program.
In the search order, internal labels take precedence over
built-in and external functions.

internal routine. A routine that exists inside the user's
program and identified by a label.

invoke. To start a command, procedure, or program.

K
keyword. Symbols reserved for use by the language
processor in certain contexts. Keywords must be the
first token in a clause and cannot be followed by an
equal character or colon. Keywords include the names
of the instructions and ELSE, END, OTHERWISE,
THEN, and WHEN.

L
label. A clause that consists of a single symbol followed
by a colon.

LIFO (Iast-in-first-out). A queuing technique in which
the next item to be retrieved is the item most recently
placed in the queue. Contrast with FIFO
(first-in-first-out) .

literal pattern. In REXX, quoted stings used in a
parsing template to specify how a sequence of characters
is split up.

Glossary of Terms and Abbreviations 233

literal string. A sequence including any characters and
delimited by single quotes (') or double quotes (").

logical operator. Performs logical operations on one or
two terms. In REXX, the logical operators include:
AND, Inclusive OR Exclusive OR, or Logical NOT. A
value of '1' is returned if the expression is true and '0' if
the expression is false.

M

macro. A program that performs certain operations in
applications such as editors and assemblers. A REXX
program that issues subcommands to XEDIT is a
macro.

module. (1) A unit of a software product that is
discretely and separately identifiable with respect to
modifying, compiling, and merging with other units, or
with respect to loading and execution. For example, the
input to, or output from, a compiler, the assembler, the
linkage editor, or an exec routine. (2) A nonrelocatable
file whose external references have been resolved.

N

null clause. A clause consisting of only blanks,
comments, or both. A null clause is ignored unless it
includes a comment, in which case it will be traced, if
appropriate.

null string. A string with no characters and has a
length of zero.

number. A character string consisting of one or more
decimal digits optionally prefixed by a plus or minus
sign, and optionally including a single period that
represents a decimal point. A number can also have a
power of 10 suffixed in conventional exponential
notation: an E (uppercase or lowercase) followed
optionally by a plus or minus sign then followed by one
or more decimal digits defining the power of 10.

numeric pattern. A pattern that specifies, by column
number, how input data is to be parsed.

o
operand. Information entered with a command name to
define the data on which a command processor operates
and to control the execution of the command processor.

operator. A token that specifies what type of action to
be done on one or two terms. There are four types of
operators: concatenation, arithmetic, comparison, and
logical.

234 VM/SP System Product Interpreter User's Guide

p

parameter. A variable that is given a constant value for
a specified application and that may denote the
application.

parameter list (PLIST). In CMS, a string of 8-byte
arguments that call a CMS command or function. The
first argument must be the name of the command or
function to be called. General register I points to the
beginning of the parameter list.

parse. A method of splitting up a sequence of
characters with a template and assigning the resultant
values to variables.

pattern. In parsing, specifies where a sequence of
characters are split up based on the matching of strings
or based on the position within the string. Patterns can
be specified as a variable or string and are usually
removed from the data during parsing.

PLIST. Parameter list.

positional pattern. Patterns that cause parsing to occur
on the basis of position within the input string. They
take the form of signed or unsigned whole numbers.

Procedures Language/VM.. A component of VM/SP.
It contains the VM/SP System Product Interpreter,
which processes the REXX language. This component
contains the VM/SP implementation of the Systems
Application Architecture Procedures Language in
addition to the VM/SP System Product Interpreter
function available in VM/SP Releases 3, 4, and 5.
Procedures Language/VM provides a single source base
for the VM/SP System Product Interpreter in both the
CMS and GCS environment.

PROFILE EXEC. A special EXEC procedure with a
file name of PROFILE that a user can create. The
procedure is usually executed immediately after CMS is
loaded into a virtual machine (also known as IPL
CMS).

program stack. Temporary storage for lines (or files)
being exchanged by programs that execute under CMS.
See console stack.

R
RC. A REXX special variable set to the return code
from any executed host command or subcommand. It is
also set to the return code when the conditions
ERROR, FAILURE, and SYNTAX are trapped.

relative pattern. Patterns that cause parsing to occur on
the basis of the relative position in the input string.

They take the format of signed or unsigned whole
numbers.

repetitive loop. A loop that allows a set of instructions
to be performed a certain number of times. This
number can be specified as: none, a whole number, by
the subkeyword, FOREVER, or by a control variable.

RESULT. A REXX special variable that is set by the
RETURN instruction in a CALLed routine. RESULT
is dropped if the called routine does not return a value.

Restructured Extended Executor (REXX) language. A
general-purpose programming language, particularly
suitable for EXEC procedures, XED IT macros, or
programs for personal computing. Procedures, XEDIT
macros, and programs written in this language can be
interpreted by the System Product Interpreter. Contrast
with CMS EXEC language and EXEC 2 language.

REXX EXEC. An EXEC procedure or XEDIT macro
written in the REXX language and processed by the
System Product Interpreter. Synonymous with REXX
program.

REXX language. Restructured Extended Executor
language.

REXX program. Synonym for REXX EXEC.

routine. A series of instructions invoked with the
CALL instruction or as a function. It can be either
internal or external to the user's program.

s
semicolon. A token that indicates the end of a clause
and implied by the interpreter in three cases: by a
line-end, by certain keywords, and by a colon if it
follows a single symbol.

SIGL. A REXX special variable that contains the line
number of the clause currently executing when the last
transfer of control to a label took place.

simple symbol. A symbol that does not contain any
periods and does not start with a digit (0-9).

special character. Tokens that act as delimiters when
found outside a literal string. They include the
following characters: ,:;) (and the individual
characters from the operators.

special variable. Variables set automatically by the
language processor and include: RC, RESULT, and
SIGL.

SPOOL. Simultaneous peripheral operations online.

spool file block. A 4096-byte buffer that contains
control information, in addition to records.
Synonymous with spool file buffer linkage block.

spool file buffer linkage block. Synonym for spool file
block.

stack. See console stack and program stack.

stem. Any combination of characters where the last
character is a period and the first character cannot be a
digit (0-9) or a period.

subcommand. The commands of processors such as
EDIT or System Product Editor (XED IT) that run
under CMS.

subkeyword. Symbols reserved by the language
processor within the clause of individual instructions.
For example, the symbol FOREVER is a subkeyword of
the DO instruction.

supervisor call instruction (SVC). An instruction that
interrupts a program being executed and passes control
to the supervisor so that it can do a specific service
indicated by the instruction.

SVC. Supervisor call instruction.

symbol. Any combination of alphabetic or numeric
characters (A-Z, a-z, 0-9) and the characters @ # $ ¢ . !
? and underscore.

synonym. In CMS, an alternative command name
defined by the user as equivalent to an existing CMS
command name. Synonyms are entries in a CMS file
with a file type of SYNONYM. Entering the
SYNONYM command allows use of those synonyms
until that terminal session ends or until the use of
synonyms is revoked by entering the SYNONYM
command with no operands.

syntax. The rules for the construction of a command or
program.

System Product Editor. The CMS facility, comprising
the XEDIT command and XEDIT subcommands and
macros, that lets a user create, change, and manipulate
CMS files.

System Product Interpreter. The language processor of
the VM/SP operating system that processes procedures,
XEDIT macros, and programs written in the REXX
language.

Systems Application Architecture. A defined set of
interfaces, conventions, and protocols that can be used
across various IBM systems.

Glossary of Terms and Abbreviations 235

T

template. A guide that allows strings to be parsed by
words (delimited by blanks), by explicit matching of
strings, or by specifying numeric positions.

term. An element of an expression that consists of
literal strings, symbols, or function calls.

terminal input buffer. Holds lines entered at the user's
terminal until CMS processes them.

tokenized PLIST (parameter list). A string of
doubleword aligned parameters occupying successive
doublewords.

trace. In REXX, a means of tracking the interpretation
of a program. Tracing is primarily used for debugging.

u
user. Anyone who requests the services of a computing
system.

user-written eMS command. Any CMS file created by
a user that has a file type of MODULE or EXEC. Such
a file can be executed as if it were a CMS command by
issuing its file name, followed by any operands or
options expected by the program or EXEC procedure.

user ID. A one-to eight character alphanumeric symbol
identifying each virtual machine.

v
variable pattern. A parsing pattern that uses variables
to specify where a string of characters are parsed. The
value of the variable can be set by the user and can
change during execution.

variable symbol. In an EXEC procedure, a symbol that
is assigned a value by the user, or in some cases by the
System Product Interpreter. The value of a variable
symbol can be tested and changed using control
statements.

236 VM/SP System Product Interpreter User's Guide

virtual console. A console simulated by CP on a
terminal such as a 3270. The virtual device type and
I/O address are defined in the VM/SP directory entry
for that virtual machine.

virtual machine (VM). A functional equivalent of a real
machine.

Virtual Machine/System Product (VM/SP). An IBM
licensed program that manages the resources of a single
computer so that multiple computing systems appear to
exist. Each virtual machine is the functional equivalent
of a real machine.

VM/SP. Virtual Machine/System Product.

VM READ screen status. For a display terminal used
as a virtual console under VM/SP, an indicator located
in the lower right of the screen that displays when the
user's virtual machine is not executing, but is waiting for
a response or a request for work from the user.

w
whole number. An integer ora number that has a zero
decimal part. Whole numbers are not usually expressed
by the language processor in exponential notation.

window. An area on the physical screen where virtual
screen data can be displayed. Windowing lets the user
do such functions as defining, positioning, and
overlaying windows; scrolling backward and forward
through data; and writing data into virtual screens.

x
XEDIT. See System Product Editor.

XED IT macro. (1) A procedure defined by a
frequently used command sequence to do a commonly
required editing function. A user creates the macro to
save repetitious rekeying of the sequence, and invokes
the entire procedure by entering a command (that is, the
macro file's file name). The procedure can consist of a
long sequence of XEDIT subcommands, CMS and CP
commands or both, along with REXX or EXEC 2
control statements to control processing within the
procedure. (2) A CMS file with a ·file type of XED/T.

Bibliography

Related Publications
You should have a copy of:

VM/SP System Product Interpreter Reference, SC24-5239.

This manual is a reference manual. It lists the REXX error messages and describes
instructions, functions, debugging aids, and parsing. It is suitable for experienced
programmers, particularly those who have used another high-level language (such
as, PL/I, Algol, and Pascal).

You may also need to refer to:

Common Programming Interface Procedures Language Reference, SC26-4358

V M / SP Application Development Reference for CM S, SC24-5284

VM/SP CMS Command Reference, SC19-6209

VM/SP CP General User Command Reference, SC19-6211

VM/SP CP System Command Reference, SC24-5402

VM/SP System Product Editor Command and Macro Reference, SC24-5221

VM/SP System Messages and Codes, SC19-6204

VM/SP System Messages Cross-Reference, SC24-5264.

Other tutorials and user's guides that may be useful are:

VM/SP Application Development Guide for CMS, SC24-5286

VM/SP eMS Primer, SC24-5236

VM/SP eMS Primer for Line-Oriented Terminals, SC24-5242

VM/SP eMS User's Guide, SC19-6210

VM/IS Writing Simple Programs with REXX, SC24-5357.

Bibliography 237

VM/SP RELEASE 6 LIBRARY
Evaluation
:;7

General
Information

GC20-1838

Plannin

Planning
Guide and
Reference

VM
Running
Guest
Operating
Systems

GC19-6212

Administration

Application Development

End Use

Quick
Reference

~ SX20-4400

V

System
Product
Editor
Command
and Macro
Reference

SC24c5221

::

.~

(7

Programmer's
GOidatothQ
SRPI for
VM/$P

SAACornmoo
Programming
Interface'
C()mmuni'"
cations
Reference

SC26~4399

17

System
Product
I nferpreter
User's>Guide

SC24~5238 .. ,

u

Introduction
to Security

SC24-5316

Corinectivity
Planning,
Administration;
and Operation

I

SC24~5378

Directory of '
Programming
Interfaces for
Customers .:.

GC24~5417

CMS Primer
for Line
Oriented
Terminals

SC24-5242

System
Product
Interpreter
Reference

SC24~5239

II one copy of each shaded manual received with product tape

238 VMjSP System Product Interpreter User's Guide

$ A i'iit ",. At'd

Installation and Service

Installation
Guide

SC24-5237

Operation

Operator's
Guide

Connectivity .'.
Programming
Guide and
Reference

SC2405377

Index/Glossary
v ~====~

LibmryGuide
and Master
Index

GC19·6207 , .. ,.

eMS.··
Command
Reference

SC19·6209

CP
Geneial,
User
Command
Reference

'·SC19~62n

:.

Glossary

SC24-5379

System , ••
Product
Editor
User's Guida'

SC24~5220

VM/SP RELEASE 6 LIBRARY

Diagnosis
'Z 'l'

System System Service
Messages Messages Routines
and Codes Cross- Program

Reference Logic

SC19-6204
1/

SC24·5264 LY20·0890

'/ '/

CP CMS CMS
Data Areas Diagnosis Data Areas
and Control Reference and Control
Blocks Blocks

LY24-5220 LY20-0893 LY24-5221
1/

Reference Summaries

Auxiliary Communication Support

VTAM VTAM VTAM
Installation Customization Operation
and Resource
Definition

SC23-0111 SC23-0112
~

SC23-0113

'7 '7

VTAM VTAM
Programming Data Areas
for LU 6.2 (VM)

SC30-3400 LY30-5593

'/

RSCS RSCS RSCS

General Planning and Messages

Information Installation and Codes

GH24-5055 SH24-5057 SH24-5196
1/

'l'

Interactive
Problem
Control
System Guide
and Reference

SC24-5260

VM CP
Trace Table
(Poster)

SX24-5225

VTAM
Messages
and Codes

SC23-0114

z
VM/Pass-
Through
Facility
Overview

GC24-5373

'/

RSCS
Operation
and Use

SH24-5058

Diagnosis
Guide

LY24-5241

VM Summary
of End Use
Tasks and
Commands
(Poster)

SX24-5173

'l'

VTAM
Programming

SC23-0115

VM/Pass-
Through
Facility:
Managing
and Using

SC24-5374

'/

RSCS
Diagnosis
Reference

LY24-5228

CP
Diagnosis
Reference

LY20-0892

VTAM
Diagnosis
Guide

LY30-5601

RSCS
Exit
Custom ization

SH24-5197

Bibliography 239

240 VM/SP System Product Interpreter User's Guide

Indel(

A
ABBREV function 95
abbreviation of information 95
abuttal 41, 78
accuracy in calculations, changing 73
addition 65
addition operator 41, 65
ADDRESS instruction 141
AND operator 45, 47
ARG function 53
ARG instruction 52, 105, 201, 205

description of 112
example of 112
using literal patterns 113

arguments
of a CALL instruction 201
of a function 50, 52
of a subroutine 202
parsing 52, 112, 210

arithmetic
checking data 64
description 63

array
description of 22
using compound symbols 22
with more than one dimension 32

assembler language functions 58
assignment

B

description of 10, 19
examples of 19

blank (concatenation operator) 41, 78
blanks removed 12
buffers l33
built-in functions 1, 50
BY expression 187

C
CALL instruction 201
Callable Services Library(CSL) 159
character

comparing 93
conversion of 100
priority of 37
sorting 90

character priority when comparing 94
character strings 10, 40
checking data 64
clause

description of 10

clause (continued)
null 11
separating 11
spanning more than one line 11

clause delimiter 11
closing a file 146
CMS environment 119, 141
CMS Primer 2
CMS (Conversational Monitor System) commands

DROFBUF 136
EXECIO 138
FINIS 146
HT 158
LISTFILE 156
MAKEBUF 136
putting data onto a program stack l31, 136
RT 158
SORT 158
suppressing messages issued by 128
taking data from a program stack 132, l37
using 119

column formatting 80
comma to indicate continuation of a clause 11
COMMAND environment 141
comments 9, 10
COMPARE function 83, 95
comparison operators 41, 44, 93
comparisons

allowing approximation 97
characters 93
exact 97
fuzzy arithmetical 97
numbers 93
priority of characters 94
strings 95

compound symbols
description of 22
for repeated substitution 16
use of a period 22

concatenation 78
concatenation operator 41, 78
conditional loops

description of 190
DO FOREVER instruction 190, 194
DO UNTIL instruction 193
DO WHILE instruction 191, 193
LEAVE instruction 190, 197

console stack 133
continuation

of a clause 11
of expression in SAY instruction 105

Control Program (CP) commands
obtaining a reply from 138

Index 241

Control Program (CP) commands (continued)
suppressing messages issued by 138
using 122

control variable 186, 196
Conversational Monitor System (CMS) commands

DROFBUF 136
EXECIO 138
FINIS 146
HT 158
LISTFILE 156
MAKEBUF 136
putting data onto a program stack 131, 136
RT 158
SORT 158
suppressing messages issued by 128
taking data from a program stack 132
using 119

conversion between hexadecimal and decimal
characters 100

COPIES function 79
copying a string 79
COPY, XEDIT subcommand 137
correcting your program 223
CP environment 122
CP (Control Program) 61
CP (Control Program) commands

obtaining a reply from 138
suppressing messages issued by 138
using 122

creating a new file from an existing file 152

[)
dangling ELSE 176
data

prompting user for 106
putting onto a program stack 131
taking from a program stack 132

da ta types, checking 64
DA T A TYPE function 64
debugging 126
decimal number

converting 100
description of 63

decision making 173
delimiters

clause 11
comment 9

DELWORD function 85
derived name 22
designing a program 220
DIGITS 74
DIGITS option of NUMERIC instruction 73
display'ing a file on your screen 146
division 65
division operator 41, 65

242 VM/SP System Product Interpreter User's Guide

DO FOREVER instruction 190, 194
DO instruction

BY expression 187
conditional loop 190
control variable 186, 196
DO FOREVER instruction 190, 194
DO UNTIL instruction 193
DO WHILE instruction 191, 193
END keyword 60
ITERATE instruction 198
LEAVE instruction 190, 197
non-looping 77, 173, 179
repetitive loops 184

DO UNTIL instruction 59, 153, 193
DO WHILE instruction 191, 193
DROP instruction 31
DROPBUF command 137, 153
dropping variables 31
duplicate names 27
duplicating strings 79

E
E (exponent symbol) 67
ELSE keyword

dangling 176
NOP instruction 181
of IF instruction 174

END keyword
of DO instruction 60
of SELECT instruction 178

environments
CMS 119, 141
COMMAND 141
CP 122

equal operator 41, 97
evaluating expressions

order of 37,41
using parentheses 37, 42

exact comparison operators 41, 97
exactly equal operator 41, 97
exclusive OR operator 41
EXEC
EXECIO command 138, 143, 145, 153
EXIT instruction 124, 171, 200
exponent 67
exponential notation

description of 63, 67
NUMERIC DIGITS instruction 73
significant digits 73
specifying 71

exponentiation 73
exponentiation operator 41, 73
EXPOSE keyword of PROCEDURE instruction 29,

30
expressions

description of 35

expressions (continued)
evaluating

orderof 37,41
using parentheses 37, 42
using the TRACE instruction 39

in an assignment 19
in IF clause 173
parsing 114
text 78
using parentheses 37
using TRUE and FALSE 44

external functions
See external routines

external routines
functions 50, 53, 209
subroutines 209, 211

EXTRACT, XEDIT subcommand 165

f
FALSE expression 44
Features of REXX 1
FIFO (first-in/first-out) 133
file

closing 146
creating 152
displaying 146
modifying 154
reading 145
sorting 156
writing 143

file processing 143, 156
creating a file 152
reading a file 145
writing a file 143

finding
phrase in a string 85
string in another string 83

FINIS command 146, 154
fixed point number

description of 67
specifying 70

floating-point number
description of 67
specifying 71

FORMAT function 69,74
formatting output

lining up numbers 69
putting in columns 80

full screen menus 168
function call 49
functions 86

ABBREV 95
ARG 53
arguments for 50, 52
built-in 50
COMPARE 95

functions (continued)
COPIES 79
DATATYPE 64
DELWORD 85
description of 49
differences with subroutines 209
DIGITS 74
example of 52
external 50, 53, 209
FORMAT 69
FUZZ 98
HALF 49
internal 50, 53, 57, 209
LASTPOS 83
LEFT 79
LENGTH 79
MAX 50
OVERLAY 90
POS 83
RANDOM 50
returning from 52
search order 209
SIGN 74
similarities with subroutines 209
SOURCELINE 86
SUBSTR 78
SUBWORD 85
SYMBOL 31
TRANSLATE 103
TRUNC 74
user-written 50, 52
using the ARG instruction 52
VALUE 16
VERIFY 103
WORD 85
WORDINDEX 85
WORDLENGTH 85
WORDPOS 85, 103
WORDS 85
written in Assembler language 58

FUZZ 98
FUZZ option

of NUMERIC instruction 97
fuzzy arithmetical comparison 97

G
getting arguments for a function or routine 50, 52
getting data from the command line 52, 112
getting data when you are prompted 106
getting out of loops 60, 196
GOTO considered harmful 171
greater than operator 41, 44, 93
greater than or equal to operator 41
groups of instructions 77

Index 243

H
HALF function 49
Halt Interpretation (HI) immediate command 60, 214
help, providing, to explain a program 86
hexadecimal

converting 100
description of 100

HI (Halt Interpretation) immediate command 60, 214
HT (Halt Type) immediate command

SET CMSTYPE HT command 157

IF instruction
description of 173
ELSE keyword 174
THEN keyword 173

increasing accuracy in calculations 73
information abbreviated 95
instructions

ADDRESS 141
ARG 52
CALL 201
description of 10
DO 77
DO FOREVER 190
DO WHILE 191
DROP 31
EXIT 200
groups of 77
IF 173
INTERPRET 17
ITERATE 198
LEAVE 190
NOP 181
NUMERIC DIGITS 73
NUMERIC FUZZ 97
PARSE ARG 113
PARSE PULL 5, 106
PARSE VALUE 114
PARSE VAR 114
PROCEDURE 29
PULL 106
PUSH 132
QUEUE 132
RETURN 52
SAY 105
SELECT 178
SIGNAL 212
TRACE 39
UPPER 106

integer 63
integer division operator 41, 65
internal functions

See internal routines
internal routines

functions 50, 53, 57, 209

244 VM/SP System Product Interpreter User's Guide

internal routines (continued)
subroutines 29, 82, 206, 209

INTERPRET instruction 17
interpreter 2, 9
issuing commands

to CMS 119
to CP 122

ITERATE instruction 198

J
jumping through your program 198, 212
justified left 79

K
keywords

L

of DO instruction
END 60

of IF instruction
ELSE 174
THEN 173

of SELECT instruction
END 178
OTHERWISE 178
THEN 178
WHEN 178

to manipulate program stack 133

label
description of 11
in a CALL instruction 203

LASTPOS function 83
LEAVE instruction 154, 190, 196
leaving loops 60, 196
leaving your program 200
LEFT function 79
left justified 79
LENGTH function 79, 85, 90
less than operator 42, 44, 93
less than or equal to operator 42
LIFO (last-in/first-out) 133
LISTFILE command 157
literal patterns in parsing 113
logical operator 47
loops

conditional 190
control variable 186, 196
description of 59, 184
DO FOREVER instruction 190, 194
DO UNTIL instruction 59, 193
DO WHILE instruction 191, 193
ITERATE instruction 198
LEAVE instruction 190, 197
leaving 60, 196
repetitive 184

loops (contillued)
skipping instructions 198, 212

M
macros 161
MAKEBUF command 137, 153
manipulating the program stack 133
mantissa 67
MAX function 50
menu, full screen 168

messages
suppressing

FILE NOT FOUND 141
from CMS commands 128
from CP commands 138

XEDIT, displaying 164
minus operator 41, 65
modifying a file, precautions when 154
mUltiple clauses on a line 11
multiplication 65
multiplication operator 41, 65

N
naming variables 20
NOP instruction 181
not equal operator 41, 97
not exactly equal operator 41, 97
not greater than operator 41
not less than operator 42
NOT operator 41, 47
null clauses 11
numbers

comparing 93
determining the sign 74
exponential notation 67
fixed point 67
floating point 67
power of 73
range of 67
rounding 74
truncating 74
types of 63
whole 63

NUMERIC DIGITS instruction 73
NUMERIC FUZZ instruction 97

o
operator

comparison 42, 44, 93
list of 41
logical 47
prefix 41
priority of 37, 41
using parentheses 37, 42

OR operator 45, 47
order of evaluation 37, 41, 42
order of precedence 37
OTHERWISE keyword 178
output format 69, 80
OVERLAY function 90
overlaying one string onto another 90

p
parentheses 37, 42
PARSE ARG instruction 113
PARSE instruction 5
PARSE PULL instruction 5, 106
PARSE VALUE instruction 114
PARSE VAR instruction 114
parsing

arguments 52, 112, 210
data when you are prompted 106
expressions 114
use of a period 110
using literal patterns 113
using patterns 117
variables 114
words 109

patterns used in parsing 117
period

as a placeholder in parsing 110
in compound symbols 22

phrase 85
placeholder, period, in parsing 110
plus operator 41, 65
POS function 83
power of a number 73
precedence

of characters 94
operators 37, 41

prefix operators 41
Primer for CMS 2
priority of characters 94
priority of operators 37, 41
PROCEDURE instruction

description of 29
EXPOSE keyword 29

PROFILE XED IT 166
program stack

as a queue 132
as a stack 132
description of 131
extensions (buffers) 133
putting data onto 131, 136
taking data from 132, 137
using 134
with SFS sources 135

programs
correcting 223
description of 171

Index 245

programs (continued)
designing 220
leaving 200

prompting user for data 106
PULL instruction

description of 106
using 6, 109, 132, 133

PUSH instruction 132, 133
putting data onto the program stack 131, 136
putting words into variables 109

Q
queue described 132
QUEUE instruction 132, 133, 137
quotation marks 10, 121
quotes 10, 121

t:l
RANDOM function 50
range of numbers 67
RC special variable 124
reading files 145
reading plan 3
recursive calls

See CALL instruction
remainder 65
remainder operator 41, 65
repeated substitution 16
repetitive loops 184
RESULT reserved symbol 205
return codes

CMS and CP 123
REXX 13

RETURN instruction 52, 201, 205
returning from a function or routine 52, 205
rounding numbers 40, 74
RT Immediate command

SET CMSTYPE R T command 157

S
Say 105
search order for subroutines and functions 209
SELECT instruction

description of 172, 178
END keyword 179
example of 20, 180
OTHERWISE keyword 179
THEN keyword 179
WHEN keyword 179

separating clauses 11
SFS

See Shared File System(SFS)
Shared File System(SFS)

CSL routines, use with 159
modifying SFS files 154

246 VM/SP System Product Interpreter User's Guide

Shared File System(SFS) (continued)
processing files in 159
program stack, use with 135
writing programs with 5

SIGL
special variable 124
storing line numbers 126, 213

SIGN function 74, 103
SIGNAL instruction

description of 126, 213
example of 129
restrictions 212
usage 212

signed number 63
significant digits 73
skipping instructions in a loop 198, 212
SORT command 157
sorting

a file 156
characters 90

SOURCELINE function 86, 153
special variables

RC 124
Result 124
SIGL 124

splitting
clauses 11
data 109

stack described 132
stem

description of 24
example of 24

strictly greater than operator 41
strictly greater than or equal to operator 41
strictly less than operator 41
strictly less than or equal to operator 41
strictly not greater than operator 41
strictly not less operator 41
string

comparing 95
copying 79
description of 10
duplicating 79
examples of 10
overlaying 90

subcommands in XEDIT 161
subroutines

ARG instruction 205
arguments for 202
description of 201
differences with functions 209
example of 29, 82
external 209, 211
formatting output 82
internal 30, 82, 206, 209
PROCEDURE instruction 29
protecting variables 29

subroutines (col/til/lied)
RETU RN instruction 205
search order 209
sharing variables 30
similarities with functions 209

substituting
compound symbols 16
symbols 15
using the INTERPRET instruction 17
using the VALUE function 16
variables 16

SUBSTR function 78, 85, 90
substring 78
subtraction 65
subtraction operator 41, 65
SUBWORD function 85
symbol

compound 22
description of 19
determining if it is a variable 31
duplicate names of 27
substituting 16

SYMBOL function 31
syntax error

example of 12
FORMAT function 69

syntax, description of 12
Systems Application Architecture (SAA) 2

1
tables 80
tabulating text output 80, 82
taking data from a program stack 132, 137
term 36
terminal input buffer 133
text expressions 78
THEN keyword

NOP instruction 181
of IF instruction 173
of SELECT instruction 178

TRACE
Errors 126
Intermediate results 39
Normal 39
Results 39, 40, 126

TRACE instruction 39
tracing

description of 39
example 39

TRANSLATE function 103
translating

between character, hexadecimal, decimal 100
character sets 99, 103
examples of 100
to uppercase 5, 12, 106
TRANSLATE function 103

translating (continued)
VERIFY function 103

TRUE expression 44
TRUNC function 74
truncating numbers 74
types of data 40

U
UPPER instruction 95, 106
uppercase 5, 12, 106
user-written functions 50, 52

V
VALUE function 16
variables

description of 11, 19
dropping 31
example of 20
length of 79
naming conventions 20
parsing 114
protecting 29
setting of 20, 109
sharing between routines 30
substituting 16
XEDIT, known to 165

variables, special
RC 124
Result 124
SIGL 124

VERIFY function 103

W
WHEN keyword 178
whole numbers 63
word

description of 91
functions using 91
parsing 109

WORD function 85, 91
WORDINDEX function 85
WORD LENGTH function 85
WORDPOS function 85, 86, 103
WORDS function 85, 91
writing files 143
writing lines to the screen 105

)(
XEDIT (System Product Editor)

EXTRACT subcommand 165
generating full screen menus 168
macros

description of 162
examples of 162
naming 162

Index 247

XEDIT (System Product Editor) (continued)
macros (continued)

return codes 162
messages 164
profile 166
subcommands 161

Special Characters
. (as a placeholder) 110
. (in compound symbols) 22
< (less than operator) 42, 44, 93
« (strictly less than operator) 41
«= (strictly less than or equal to operator) 41
<= (less than or equal to operator) 42
+ (addition operator) 41, 65
+ (prefix operator) 41
I (inclusive OR operator) 45, 47
II (concatenation operator) 41,78
& (AND operator) 45, 47
&& (exclusive OR operator) 41
* (multiplication operator) 41, 65
** (exponentiation operator) 41, 73
* I comment delimiter 9
-, (NOT operator) 41
-,< (not less than operator) 42
-,« (strictly not less than operator) 41
-,> (not greater than operator) 41
-,» (strictly not greater than operator) 41
-,= (not equal operator) 41, 97
-,== (not exactly equal operator) 41, 97
I (division operator) 41, 65
1* comment delimiter 9
II (remainder operator) 41,65
1= (not equal operator) 41, 97
1== (not exactly equal operator) 41, 97
% (integer division operator) 41, 65
> (greater than operator) 41, 44, 93
» (strictly greater than operator) 41
»= (strictly greater than or equal to operator) 41
>= (greater than or equal to operator) 41
#CP I CMS 61
= (equal operator) 41, 45, 93, 97
== (exactly equal operator) 41, 97
-- (prefix operator) 41
- (subtraction operator) 41, 65
\< (not less than operator) 42
\« (strictly not less than operator) 41
\> (not greater than operator) 41
\» (strictly not greater than operator) 41
\= (not equal operator) 41, 97
\== (not exactly equal operator) 41, 97

248 VM/SP System Product Interpreter User's Guide

--------- - ------- - ---- - - ----------_.-
®

Printed in U.S.A.

Program Number
5664-167

File Number
5370/4300-39

/

VMjSP
System Product Interpreter User's Guide
Order No. SC24-5238-04 '

READER'S
COMMENT
FORM

Is there anything you especially like or dislil{e about this, book? Feel free to comment on
specific errors or omissions, accuracy, organization, or completeness of this book.

IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any
obligation to you, and all such information will be considered nonconfidential.

Note: Do not use this form to report system problems or to request copies of publications. Instead, contact your
IBM representative or the IBM branch office serving you.

Would you like a reply? _YES _NO

Please print your name, company name, and address:

mM Branch Office serving you:

Thank you for your cooperation. You can either mail this form directly to us or give this
form to an IBM representative who will forward it to us.

SC24-5238-04

Reader's Comment Form

Fold and tape Please Do Not Staple

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NY

POSTAGE WILL BE PAID BY ADDRESSEE:

--------- -------- - ---- - - ----------_.-
INTERNATIONAL BUSINESS MACHINES CORPORATION
DEPARTMENT G60
PO BOX 6
ENDICOTT NY 13760-9987

1",11"11,1",1,11"11,,,1,1,, 1,1"1"1,1,,,111,,,1

Fold and tape Please Do Not Staple

--------..... ------c:= -====0.. -=-__ - - - ---1:::::=:1 ____ _

r=-__ ,

®

CUT
OR

FOLD
ALONG

LINE

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

c:;·:··!;,:· ::< ;-.:

Fold and tape

VM/SP
System Product Interpreter User's Guide
Order No. SC24-5238-04

READER'S
COMMENT
FORM

Is there anything you especially like or dislike about this book? Feel free to comment on
specific errors or omissions, accuracy, organization, or completeness of this book.

IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any
obligation to you, and all such information will be considered nonconfidential.

Note: Do not use this form to report system problems or to request copies of publications. Instead, contact your
IBM representative or the IBM branch office serving you.

Would you like a reply? _YES _NO

Please print your name, company name, and address:

mM Branch Office serving you:

Thank you for your cooperation. You can either mail this form directly to us or give this
form to an IBM representative who will forward it to us.

SC24-5238-04

Reader's Comment Form

Fold and tape Please Do Not Staple

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NY

POSTAGE WILL BE PAID BY ADDRESSEE:

--------- -------- - ---- - -----------_.-
INTERNATIONAL BUSINESS MACHINES CORPORATION
DEPARTMENT G60
PO BOX 6
ENDICOTT NY 13760-9987

1 ••• 11 •• 11.1 ••• 1.11 •• 1111.1.1 •• 1.1 •• 1 •• 1.111.111 ••• 1

Fold and tape Please Do Not Staple

--------- - ------- ---- ----------~-,
®

CUT
OR

FOLD
ALONG

LINE

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

• •• ' II

5C24-5238-04

